Skip to main content
Log in

A new family of multistep numerical integration methods based on Hermite interpolation

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, a new family of explicit and implicit multistep methods is presented both for the error-controlled and uncontrolled modes. The main concept is to replace the Newton interpolation with the Hermite interpolation, where the Hermite polynomial is fitted to the function values and its derivatives. This idea is very useful in the numerical solution of problems (e.g., orbit propagation problem) where higher-order derivatives can easily be computed. In addition to the theoretical concept, the stability regions of the proposed methods are determined. The new methods are more stable than the well-known multistep numerical integrators (i.e., Adams–Bashforth and Adams–Bashforth–Moulton) in the explicit, implicit, and predictor–corrector forms. Using the second-order derivatives gives smaller error constants in the proposed method. The new integrators are numerically tested for a few examples, and the solutions are compared with those of the well-known multistep methods. Moreover, the CPU time and absolute integration error are compared in the satellite orbit propagation problem using various integration methods. The CHAMP mission, i.e., a German small-satellite mission for geoscientific and atmospheric research and applications, is considered as a case study for comparing the achievable accuracy of the proposed method with the existing method for solving the two-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bashforth, F., Adams, J.C.: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops. Cambridge University Press, Cambridge (1883)

    Google Scholar 

  • Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Wiley, New York (1987)

    MATH  Google Scholar 

  • Butcher, J.C.: Numerical methods for ordinary differential equations in the twentieth century. J. Comput. Appl. Math. 125, 1–29 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Beutler, G.: Methods of Celestial Mechanics. Vol. I: Physical, Mathematical, and Numerical Principles. Springer, Berlin (2005)

    Google Scholar 

  • Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon & Breach, New York (1978)

    MATH  Google Scholar 

  • Chakravarti, P.C., Kamel, M.S.: Stiffly stable second derivative multistep methods with higher order and improved stability region. BIT 23, 75–83 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Conte, S.D., de Boor, C.: Elementary Numerical Analysis. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  • Curtis, L.E.: High order explicit Runge–Kutta formulae, their uses, and limitations. J. Inst. Math. Appl. 16, 35–55 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Nat. Acad. Sci. 38, 235–243 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    MATH  MathSciNet  Google Scholar 

  • Dormand, J.R., Prince, P.J.: New Runge–Kutta algorithms for numerical simulation in dynamical astronomy. Celest. Mech. 18, 223–232 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comp. Appl. Math. 6(1), 19–26 (1980). doi:10.1016/0771-050X(80)90013-3

    Article  MATH  MathSciNet  Google Scholar 

  • Dormand, J.R., Mikkawy, M.E.A., Prince, P.J.: High-order embedded Runge–Kutta–Nystrom formulae. IMA J. Numer. Anal. 7, 423–430 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Enright, W.H., Higham, D.J.: Parallel defect control. BIT Numer. Math. 31, 647–663 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Fasano, G., D’Errico, M.: Modeling orbital relative motion to enable formation design from application requirements. Celest. Mech. Dyn. Astron. 105, 113–139 (2009). doi:10.1007/s10569-009-9230-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Forrington, C.V.D.: Extensions of the predictor-corrector method for the solution of systems of ordinary differential equations. Comput. J. 4, 80–84 (1962)

    Article  MathSciNet  Google Scholar 

  • Filippi, S., Graf, J.: New Runge–Kutta–Nystrom formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form \(y^{\prime \prime } = f(x, y)\). J. Comput. Appl. Math. 14, 361–370 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38, 368–399 (2009). doi:10.1007/s10915-008-9245-1

    Article  MATH  MathSciNet  Google Scholar 

  • Garrappa, R.: On some explicit Adams multistep methods for fractional differential equations. J. Comput. Appl. Math. 229, 392–399 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Gupta, G.K.: Implementing second derivative multistep methods using the Nordsieck polynomial representation. Math. Comp. 32, 13–18 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Hairer, E.: A Runge–Kutta method of order 10. J. Inst. Math. Appl. 21, 47–59 (1978)

    Article  MathSciNet  Google Scholar 

  • Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  • Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  • Hermite, Ch.: Extrait d’une lettre de M. Ch. Hermite a M. Borchardt sur la formule d’interpolation de Lagrange. J. de Crelle. 84, 432–443 (1878)

    Google Scholar 

  • Heun, K.: Neue Methoden zur approximativen Integration der Dierentialgleichungen einer unabh angigen Ver anderlichen. Z. Math. Phys. 45, 23–38 (1900)

    MATH  Google Scholar 

  • Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff system. Appl. Math. Model. 30, 466–476 (2006)

    Article  MATH  Google Scholar 

  • Ismail, G., Ibrahim, I.: New efficient second derivative multistep methods for stiff systems. Appl. Math. Model. 23, 279–288 (1999)

    Article  MATH  Google Scholar 

  • Kirlinger, G.: Linear multistep methods applied to stiff initial value problems-A survey. Math. Comput. Modell. 40, 1181–1192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kowali, S., Gupta, G.K.: Polynomial formulation of second derivative multistep. Math. Comput. 38(158), 447–458 (1982)

    Article  Google Scholar 

  • Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  • Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1972)

    Google Scholar 

  • LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  • Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comp. Appl. Math. 7, 67–75 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell, A.R., Craggs, J.W.: Stability of difference relations in the solution of ordinary differential equations. Math. Tables Aids Comput. 7, 127–129 (1953)

    MATH  MathSciNet  Google Scholar 

  • Milne, W.E.: Numerical integration of ordinary differential equations. Am. Math. Monthly. 33, 455–460 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  • Montenbruck, O., Gill, E.: Satellite Orbits-Models, Methods, and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  • Moulton, F.R.: New Methods in Exterior Balistics. University of Chicago, Chicago (1926)

    Google Scholar 

  • Nystrom, E.J.: Uber die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fennicae. 50(13), 1–55 (1925)

    Google Scholar 

  • Nguyen-Ba, T., Vaillancourt, R.: Hermite–Birkhoff–Obrechkoff 3-stage 6-step ODE solver of order 14. Can. Appl. Math. Q. 13(2), 151–181 (2005)

    MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Yagoub, H., Zhang, Y., Vaillancourt, R.: Variable-step variable-order 3-stage Hermite–Birkhoff–Obrechkoff ODE solver of order 4 to 14. Can. Appl. Math. Q. 14(4), 413–437 (2006)

    MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Sharp, P.W., Yagoub, H., Vaillancourt, R.: Hermite–Birkhoff–Obrechkoff 3-stage 4-step ODE solver of order 14 with quantized stepsize. Can. Appl. Math. Q. 15(2), 181–201 (2007)

    MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Yagoub, H., Zhang, Y., Vaillancourt, R.: Variable-step-variable-order 2-stage Hermite–Birkhoff–Obrechkoff ODE solver of order 3 to 14. Sci Proc Riga Tech Univ 37(50), 79–102 (2008a)

    Google Scholar 

  • Nguyen-Ba, T., Sharp, P.W., Vaillancourt, R.: Hermite–Birkhoff–Obrechkoff 4-stage 4-step ODE solver of order 14 with quantized stepsize. J. Comput. App. Math. 222(2), 608–621 (2008b)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Bozic, V., Kengne, E., Vaillancourt, R.: One-step 9-stage Hermite–Birkhoff–Taylor ODE solver of order 10. J. Appl. Math. Comput. 31, 335–358 (2009). doi:10.1007/s12190-008-0216-3

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Yagoub, H., Hao, H., Vaillancourt, R.: Pryce pre-analysis adapted to some DAE solvers. Appl. Math. Comput. 217, 8403–8418 (2011). doi:10.1016/j.amc.2011.03.037

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Ba, T., Desjardins, S.J., Sharp, P.W., Vaillancourt, R.: Contractivity-preserving explicit Hermite–Obrechkoff ODE solver of order 13. Celest. Mech. Dyn. Astron. 117 (2013). doi:10.1007/s10569-013-9520-9

  • Quarteroni, A., Fausto, S., Gervasio, P.: Scientific Computing with MATLAB and Octave, 3rd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  • Reigber, C., Luhr, H., Schwintzer, P.: CHAMP mission status. Adv. Space Res. 30(2), 129–134 (2002)

    Article  ADS  Google Scholar 

  • Runge, C.: Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 46, 167–178 (1895)

    Google Scholar 

  • Shampine, L.F.: Error Estimation and Control for ODEs. J. Sci. Comput. 25(1/2) (2005). DOI:10.1007/s10915-004-4629-3

  • Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Shokri, A., Shokri, A.: The new class of implicit L-stable hybrid Obrechkoff method for the numerical solution of first order initial value problems. Comput. Phys. 184, 529–531 (2013)

    ADS  MathSciNet  Google Scholar 

  • Slonevsky, R.V., Stolyarchuk, R.R.: Evaluation of the local error of fractional–rational multistep methods with variable integration step. J. Math. Sci. 178, 399–408 (2011)

    Article  MathSciNet  Google Scholar 

  • Seeber, G.: Satellite Geodesy. Walter de Gruyter, Berlin (2003)

    Book  Google Scholar 

  • Yang, W.Y., Cao, W., Chung, T., Morris, J.: Applied Numerical Methods Using Matlab. Wiley, New Jersey (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Seif.

Appendix

Appendix

1.1 Backward difference

The difference approximation could be achieved using Taylor series. If \(f_{k-1}\) and \({f}^{\prime }_{k-1}\) are expanded to Taylor series, then we have

$$\begin{aligned} \begin{aligned} \hbox {I)}\quad f_{k-1}&=f(t_k -h)=f_k -h.{f}^{\prime }_k +\frac{h^{2}}{2!}f_k^{(2)} -\frac{h^{3}}{3!}f_k^{(3)} +\frac{h^{4}}{4!}f_k^{(4)} +\cdots \\ \hbox {II)}\quad {f}^{\prime }_{k-1}&={f}'(t_k -h)={f}^{\prime }_k -h.f_k^{(2)} +\frac{h^{2}}{2!}f_k^{(3)} -\frac{h^{3}}{3!}f_k^{(4)} +\cdots , \end{aligned} \end{aligned}$$
(48)

where

$$\begin{aligned} \begin{aligned} f_k&=f(t_k ) \\ {f}^{\prime }_k&=\frac{\partial f(t)}{\partial t}\left| {_{t=t_k}}\right. \end{aligned} \end{aligned}$$
(49)

The \(f_k^{(2)}\) could be computed from the following equation:

$$\begin{aligned} 3f_{k-1} +h.{f}^{\prime }_{k-1}&= 3f_k -2h.{f}^{\prime }_k +\frac{h^{2}}{2}f_k^{(2)} -\frac{h^{4}}{24}f_k^{(4)} \nonumber \\ \Rightarrow f_k^{(2)}&= \frac{2}{h^{2}}\left[ {3f_{k-1} +h.{f}^{\prime }_{k-1} -3f_k +2h.{f}^{\prime }_k +\frac{h^{4}}{24}f_k^{(4)}}\right] . \end{aligned}$$
(50)

Similarly, \(f_k^{(3)}\)

$$\begin{aligned} f_{k-1} +\frac{h}{2}.{f}^{\prime }_{k-1}&= f_k -\frac{h}{2}.{f}^{\prime }_k +\frac{h^{3}}{12}f_k^{(3)} -\frac{h^{4}}{12}f_k^{(4)} \nonumber \\ \Rightarrow f_k^{(3)}&= \frac{6}{h^{3}}\left[ {2f_{k-1} +h.{f}^{\prime }_{k-1} -2f_k +h.{f}^{\prime }_k +\frac{h^{4}}{6}f_k^{(4)} } \right] . \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifi, M.A., Seif, M.R. A new family of multistep numerical integration methods based on Hermite interpolation. Celest Mech Dyn Astr 118, 29–48 (2014). https://doi.org/10.1007/s10569-013-9517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9517-4

Keywords

Navigation