Skip to main content
Log in

Propagation of dust-ion-acoustic solitary waves for damped modified Kadomtsev–Petviashvili–Burgers equation in dusty plasma with a q-nonextensive nonthermal electron velocity distribution

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

The nonlinear dust ion acoustic solitary waves (DIAW) in a magnetized collisional dusty plasma comprising with negatively charged dust grain, positively charged ions along with q-nonextensive nonthermal electrons and neutral particles in the presence of small damping force is studied analytically through the framework of damped modified Kadomtsev-Petviashvili-Burgers (DMKPB) equation. Reductive perturbation technique (RPT) is employed to derive the DMKPB equation. It is observed that there is a critical point for the plasma parameters where the amplitude of the solitary wave of damped KP Burgers equation diverges. The DMKPB equation is derived from there and the soliton like solutions with finite amplitude is extracted. The influence of various plasma parameters like entropic index, dust ion collisional frequency, ion kinematic viscosity, speed of the traveling wave and the parameter indicating the ratio between unperturbed dust ion density and electron are investigated on the propagation of dust ion acoustic wave (DIAW). A significant effect on the wave structures due to the variation of present plasma parameters has been observed. Finally, the temporal evolution of a solitary wave solution is depicted through a numerical standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aslanov, V.S., Yudintsev, V.V.: Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages. Adv. Space Res. 55, 660–667 (2015)

    Article  Google Scholar 

  2. Bain, A.S., Tribeche, M., Gill, T.S.: Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 18, 022108 (2011)

    Article  Google Scholar 

  3. Baluku, T.K., Hellberg, M.A.: Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas 15, 123705 (2008)

    Article  Google Scholar 

  4. Bouzit, O., Tribeche, M., Bains, A.S.: Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution. Phys. Plasmas Hellberg 084506 (2015)

  5. Cairns, R.A., Mamun, A.A., Bingham, R., Bostrom, R., Dendy, R.O., Nairn, C.M.C., Shukla, P.K.: Electrostatic solitary structures in non thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995)

    Article  Google Scholar 

  6. Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123, 83–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, Z., Li, S., Dai, Q., Huang, J.: Singular periodic soliton solutions and resonance for the Kadomtsev–Petviashvili equation. Chaos Solitons Fract. 34, 1148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, T.K., Ali, R., Chatterjee, P.: Effect of dust ion collision on dust ion acoustic waves in the framework of damped Zakharov–Kuznetsov equation in presence of external periodic force. Phys. Plasmas 24, 103703 (2017)

    Article  Google Scholar 

  9. Dorranian, D., Sabetkar, A.: Dust acoustic solitary waves in a dusty plasma with two kinds of nonthermal ions at different temperatures. Phys. Plasmas 19, 013702 (2012)

    Article  Google Scholar 

  10. Duan, W.S., Shi, Y.R., Hong, X.R.: Theoretical study of resonance of the Kadomtsev–Petviashvili equation. Phys. Lett. A 323, 89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. El-Shewy, E.K., Abo el Maaty, M.I., Abdelwahed, H.G., Elmessary, M.A.: Solitary solution and energy for the Kadomstev–Petviashvili equation in two temperatures charged dusty grains. Astrophys. Space Sci. 332, 179 (2011)

  12. Elwakil, S.A., El-Hanbaly, A.M., El-Shewy, E.K., El-Kamash, I.S.: Symmetries and exact solutions of KP equation with an arbitrary nonlinear term. J Theor Appl Phys. 8, 130 (2014)

    Article  Google Scholar 

  13. Emami, Z., Pakzad, H.R.: Solitons of KdV and modified KdV in dusty plasmas with superthermal ions. Indian J. Phys. 85, 1643 (2011)

    Article  Google Scholar 

  14. Goertz, C.K.: Dusty plasmas in the solar system. Rev. Geophys. 27, 271 (1989)

    Article  Google Scholar 

  15. Goldreich, P., Julian, W.H.: Pulsar electrodynamics. Astrophys. J. 157, 869 (1969)

    Article  Google Scholar 

  16. Groves, M.D., Sun, S.M.: Fully localised solitary-wave solutions of the three dimensional gravity-capillary water-wave problem. Arch. Rat. Mech. Anal. 188, 1–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurevich, A.V., Istomin, Y.: Physics of the pulsar magnetosphere. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  18. Hammack, J., McCallister, D., Scheffner, N., Segur, H.: Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, 95–122 (1995)

    Article  MathSciNet  Google Scholar 

  19. Hammack, J., Scheffner, N., Segur, H.: Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, 567–89 (1989)

    Article  MathSciNet  Google Scholar 

  20. Havens, O., Melandso, F., Aslaksen, T.K., Nitter, T.: Collisionless braking of dust particles in the electrostatic field of planetary dust rings. Phys. Scr. 45, 491 (1992)

    Article  Google Scholar 

  21. Ikezi, H., Taylor, R.J., Baker, D.: Formation and interaction of ion-acoustic solitions. Phys. Rev. Lett. 44, 11 (1970)

    Article  Google Scholar 

  22. Jun-Xiao, Z., Bo-Ling, G.: Analytic solutions to forced KdV equation. Commun. Theor. Phys. 52, 279 (2009)

    Article  MathSciNet  Google Scholar 

  23. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk SSSR 192(4), 753–756 (1970)

    MATH  Google Scholar 

  24. Kakutani, T., Ono, H., Taniuti, T., Wei, C.C.: Reductive Perturbation method in nonlinear wave propagation II. Application to hydromagnetic waves in cold plasma. J. Phys. Soc. Jpn. 24, 941 (1968)

  25. Lin, M.M., Duan, W.S.: The Kadomtsev–Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas. Chaos Soliton Fract. 23, 929 (2005)

    Article  MATH  Google Scholar 

  26. Michel, F.C.: Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1 (1982)

    Article  Google Scholar 

  27. Miller, H.R., Witter, P.J.: Active Galactic Nuclei. Springer, Berlin (1987)

    Google Scholar 

  28. Lin, M., Duan, W.: The Kadomtsev–Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas. Chaos Solitons Fract. 23, 929–937 (2005)

    Article  MATH  Google Scholar 

  29. Mamun, A.A.: Arbitrary amplitude dust-acoustic solitary structures in athree-component dusty plasma. Astrophys. Space Sci. 268, 443 (1999)

    Article  Google Scholar 

  30. Mandi, L., Mondal, K.K., Chatterjee, P.: Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg–de Vries equation in q-nonextensive plasmas. Eur. Phys. J. Special Topics 228, 2753–2768 (2019)

    Article  Google Scholar 

  31. Mondal, K.K., Roy, A., Chatterjee, P., Raut, S.: Propagation of ion-acoustic solitary waves for damped forced Zakharov–Kuznetsov equation in a relativistic rotating magnetized electron–positron–ion plasma. Int. J. Appl. Comput. Math 6, 55 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Melandso, F.: Lattice waves in dust plasma crystals. Phys. Plasmas 3, 3890 (1996)

    Article  Google Scholar 

  33. Merlino, R.L., Barkan, A., Thomson, C.: Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5, 1607 (1998)

    Article  Google Scholar 

  34. Nakamura, Y., Bailung, H., Shukla, P.K.: Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602 (1999)

    Article  Google Scholar 

  35. Pakzad, H.R.: Kadomstev–Petviashvili (KP) equation in warm dusty plasma with variable dust charge, two-temperature ion and nonthermal electron. Pramana J. Phys. 74, 605–614 (2010)

    Article  Google Scholar 

  36. Pakzad, H.R.: Modified KP-Burger and KP-Burger equations in coupled dusty plasmas with variable dust charge and non-isothermal ions. Indian J. Phys. 84(7), 867–879 (2010)

    Article  Google Scholar 

  37. Pal, N., Mondal, K.K., Chatterjee, P.: Effect of dust ion collision on dust ion acoustic solitary waves for nonextensive plasmas in the framework of damped Korteweg-de Vries-Burgers Equation. Z. Naturforsch. 74(10), 861–867 (2019)

    Article  Google Scholar 

  38. Rao, N.N., Shukla, P.K., Yu, M.Y.: Dust-Acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543 (1990)

    Article  Google Scholar 

  39. Renyi, A.: On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 6, 285 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  40. Revans, R.W.: The transmission of waves through an ionized gas. Phys. Rev. 44, 798 (1933)

    Article  Google Scholar 

  41. Roy, K., Chatterjee, P.: Ion-acoustic dressed soliton in electron-ion quantum plasma. Indian J. Phys. 85, 1653 (2011)

    Article  Google Scholar 

  42. Sagdeev, R.Z.: Reviews of plasma physics. In: Leontovich, M.A. (ed.), vol. 4. Consultants Bureau, New York (1966)

  43. Samanta, U., Saha, A., Chatterjee, P.: Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution. Phys. Plasma 20, 022111 (2013)

    Article  Google Scholar 

  44. Seadawy, A.R., El-Rashidy, K.: Dispersive solitary wave solutions of Kadomtsev–Petviashvili and modified Kadomtsev–Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 8, 1216 (2018)

    Article  Google Scholar 

  45. Segur, H., Finkel, A.: An analytical model of periodic waves in shallow water. Stud Appl Math. 73, 183–220 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sen, A., Tiwari, S., Mishra, S., Kaw, P.: Nonlinear wave excitations by orbiting charged space debris objects. Adv. Space Res. 56(3), 429 (2015)

    Article  Google Scholar 

  47. Shahmansouri, M., Astaraki, E.: Transverse perturbation on three-dimensional ion acoustic waves in electron-positron-ion plasma with high-energy tail electron and positron distribution. J Theor Appl Phys. 8, 189–201 (2014)

    Article  Google Scholar 

  48. Singh, S., Honzawa, T.: Kadomtsev–Petviashivili equation for an ion acoustic soliton in a collisionless weakly relativistic plasma with finite ion temperature. Phys. Fluids B 5, 2093 (1993)

    Article  Google Scholar 

  49. Shukla, P.K., Mamun, A.A.: Introduction to dusty plasma physics, 1st edn. IOP, London (2002)

    Book  Google Scholar 

  50. Shukla, P.K., Slin, V.P.: Dust ion-acoustic wave. Phys. Scr. 45, 508 (1992)

    Article  Google Scholar 

  51. Shukla, P.K., Varma, R.K.: Convective cells in nonuniform dusty plasmas. Phys. Fluids B 5, 236 (1993)

    Article  Google Scholar 

  52. Shukla, P.K., Yu, M.Y., Bharuthram, R.: Linear and nonlinear dust drift waves. J. Geophys. Res. 96, 21343 (1991)

    Article  Google Scholar 

  53. Singh, S., Honzawa, T.: Kadomtsev–Petviashivili equation for an ionacoustic soliton in a collisionless weakly relativistic plasma with finite ion temperature. Phys. Fluids B 5, 2093 (1993)

    Article  Google Scholar 

  54. Tandberg-Hansen, E., Emslie, A.G.: The physics of solar flares. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  55. Tonks, L., Langmuir, I.: Oscillations in ionized gases. Phys. Rev. 33, 195 (1929)

    Article  MATH  Google Scholar 

  56. Tribeche, M., Zerguini, T.H.: Small amplitude Bernstein–Greene–Kruskal solitary waves in a thermal charge-varying dusty plasma. Phys. Plasmas 11, 4115 (2004)

    Article  Google Scholar 

  57. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tribeche, M., Amour, R., Shukla, P.K.: Ion acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution. Phys. Rev. E 85, 037401 (2012)

    Article  Google Scholar 

  59. Tribeche, M., Djebarni, L., Amour, R.: Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution Phys. Plasmas 17, 042114 (2010)

    Article  Google Scholar 

  60. Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave modulation. II. J. Math. Phys. 10, 1369 (1969)

    Article  Google Scholar 

  61. Ur-Rehman, H.: The Kadomtsev–Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas. Chin. Phys. B 22, 035202 (2013)

    Article  Google Scholar 

  62. Vasyliunas, V.M.: A survey of low energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968)

    Article  Google Scholar 

  63. Verheest, F.: Waves and instabilities in dusty space plasmas. Space Sci. Rev. 77, 267 (1996)

    Article  Google Scholar 

  64. Whipple, E.C., Northrop, T.G., Mendis, D.A.: The electrostatics of a dusty plasma. J. Geophys. Res. 90, 7405 (1985)

    Article  Google Scholar 

  65. Williams, G., Kourakis, I., Verheest, F., Hellberg, M.A.: Re-examining the Cairns–Tsallis model for ion acoustic solitons. Phys. Rev. E 88, 023103 (2013)

    Article  Google Scholar 

  66. Xue, J.K.: Kadomtsev–Petviashvili (KP) Burgers equation in a dusty plasmas with non-adiabatic dust charge fluctuation. Eur. Phys. J. D 26, 211–214 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Assuming that conservation property (3.31) holds in the system we write,

$$\begin{aligned} I= & {} \int \limits _{-\infty }^{\infty }\phi _{1}^{2}d\zeta \nonumber \\= & {} \phi _{m}^{2}(\tau )\int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta \,\, ({\text {using the result}}\, (3.32))\nonumber \\= & {} 2\phi _{m}^{2}(\tau )W\left( \tau \right) \nonumber \\= & {} 2.\frac{6\left( M\left( \tau \right) -C\right) }{Al}\sqrt{\frac{Bl^{3}}{ \left( M\left( \tau \right) -C\right) }} \nonumber \\= & {} \frac{12\sqrt{Bl}}{A}\left( M\left( \tau \right) -C\right) ^{\frac{1}{2}} \end{aligned}$$
(6.1)

where

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M( \tau ) \tau }{W( \tau ) }\right) d\zeta =2W( \tau ) \end{aligned}$$

Differentiating (3.31) with respect to \(\tau \) and using the Eq. (3.29) we get

$$\begin{aligned} \frac{dI}{d\tau }= & {} 2\int \limits _{-\infty }^{\infty }\phi _{1}\frac{ \partial \phi _{1}}{\partial \tau }d\zeta \nonumber \\= & {} -2A\int \limits _{-\infty }^{\infty }\phi _{1}^{3}\frac{\partial \phi _{1}}{ \partial \xi }d\zeta -2B\int \limits _{-\infty }^{\infty }\phi _{1}\frac{ \partial ^{3}\phi _{1}}{\partial \xi ^{3}}d\zeta -2E\int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial ^{2}\phi _{1}}{\partial \xi ^{2}}d\zeta \nonumber \\&-2D\int \limits _{-\infty }^{\infty }\phi _{1}^{2}d\zeta -2C\int \limits _{-\infty }^{\infty }\phi _{1}\left( \int \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}d\xi \right) d\zeta \end{aligned}$$
(6.2)

From (3.32), we have

$$\begin{aligned} \phi _{1}=\phi _{m}\left( \tau \right) \sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \end{aligned}$$

So

$$\begin{aligned} \frac{\partial \phi _{1}}{\partial \xi }=-\frac{l\phi _{m}\left( \tau \right) }{W\left( \tau \right) }\sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \end{aligned}$$

Therefore

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\phi _{1}^{3}\frac{\partial \phi _{1}}{ \partial \xi }d\zeta= & {} -\frac{l\phi _{m}^{4}\left( \tau \right) }{W\left( \tau \right) }\int \limits _{-\infty }^{\infty }\sec h^{4}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta \nonumber \\= & {} 0 \end{aligned}$$
(6.3)

Similarly

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial ^{3}\phi _{1}}{ \partial \xi ^{3}}d\zeta =0 \end{aligned}$$
(6.4)

Using (6.3) and (6.4), we have from (6.2),

$$\begin{aligned} \frac{dI}{d\tau }= & {} -2E\int \limits _{-\infty }^{\infty }\phi _{1}\frac{ \partial ^{2}\phi _{1}}{\partial \xi ^{2}}d\zeta -2D\int \limits _{-\infty }^{\infty }\phi _{1}^{2}d\zeta -2C\int \limits _{-\infty }^{\infty }\phi _{1}\left( \int \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}d\xi \right) d\zeta \;\, or \nonumber \\ \frac{dI}{d\tau }+ 2DI= & {} -2E\int \limits _{-\infty }^{\infty }\phi _{1}\frac{ \partial ^{2}\phi _{1}}{\partial \xi ^{2}}d\zeta -2C\int \limits _{-\infty }^{\infty }\phi _{1}\left( \int \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}d\xi \right) d\zeta \end{aligned}$$
(6.5)

Again

$$\begin{aligned} \frac{\partial ^{2}\phi _{1}}{\partial \xi ^{2}}=\frac{l^{2}\phi _{m}\left( \tau \right) }{W^{2}\left( \tau \right) }\left\{ \sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{ \zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) -\sec h^{3}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) \right\} \end{aligned}$$

and

$$\begin{aligned} \phi _{1}\frac{\partial ^{2}\phi _{1}}{\partial \xi ^{2}}=\frac{l^{2}\phi _{m}^{2}\left( \tau \right) }{W^{2}\left( \tau \right) }\left\{ \sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) -\sec h^{4}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \right\} \end{aligned}$$

Therefore

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial ^{2}\phi _{1}}{ \partial \xi ^{2}}d\zeta= & {} \frac{l^{2}\phi _{m}^{2}\left( \tau \right) }{ W^{2}\left( \tau \right) }\int \limits _{-\infty }^{\infty }\{\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) -\sec h^{4}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \}d\zeta \nonumber \\= & {} \frac{l^{2}\phi _{m}^{2}\left( \tau \right) }{W^{2}\left( \tau \right) } \left\{ 2\int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta -\int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta \right\} \nonumber \\= & {} -\frac{2l^{2}}{3}\frac{\phi _{m}^{2}\left( \tau \right) }{W\left( \tau \right) } \nonumber \\= & {} -\frac{2l^{2}}{3}\frac{6\left( M\left( \tau \right) -C\right) }{Al}\sqrt{ \frac{\left( M\left( \tau \right) -C\right) }{Bl^{3}}} \nonumber \\= & {} -\frac{4}{A\sqrt{Bl}}\left( M\left( \tau \right) -C\right) ^{\frac{3}{2}} \end{aligned}$$
(6.6)

where

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta =\frac{2}{3 }W\left( \tau \right) \end{aligned}$$

and

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta =2W\left( \tau \right) \end{aligned}$$

Again

$$\begin{aligned} \frac{\partial \phi _{1}}{\partial \chi }= & {} -\frac{m\phi _{m}\left( \tau \right) }{W\left( \tau \right) }\sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \\ \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}= & {} \frac{m^{2}\phi _{m}\left( \tau \right) }{W^{2}\left( \tau \right) }\left\{ \sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \tan h^{2}\left( \frac{ \zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) -\sec h^{3}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) \right\} \\ \int \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}d\xi= & {} \frac{ m^{2}\phi _{m}\left( \tau \right) }{W^{2}\left( \tau \right) }\int \left\{ \sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) \tan h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) -\sec h^{3}\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \right\} d\xi \\= & {} \frac{m^{2}\phi _{m}\left( \tau \right) }{lW\left( \tau \right) }\left\{ -\sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) \tan h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) +F\left( \chi ,\tau \right) \right\} \end{aligned}$$

Therefore

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\phi _{1}\left( \int \frac{\partial ^{2}\phi _{1}}{\partial \chi ^{2}}d\xi \right) d\zeta= & {} \frac{m^{2}\phi _{m}^{2}\left( \tau \right) }{lW\left( \tau \right) }\int \limits _{-\infty }^{\infty }\left\{ -\sec h^{2}\left( \frac{\zeta -M\left( \tau \right) \tau }{ W\left( \tau \right) }\right) \tan h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) \right. \nonumber \\&\left. +F\left( \chi ,\tau \right) \sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) } \right) \right\} d\zeta \nonumber \\= & {} \frac{m^{2}\phi _{m}^{2}\left( \tau \right) }{lW\left( \tau \right) } F\left( \chi ,\tau \right) \int \limits _{-\infty }^{\infty }\sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta \nonumber \\= & {} \frac{\pi m^{2}\phi _{m}^{2}\left( \tau \right) }{l}F\left( \chi ,\tau \right) \end{aligned}$$
(6.7)

where

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\sec h\left( \frac{\zeta -M\left( \tau \right) \tau }{W\left( \tau \right) }\right) d\zeta =\pi W\left( \tau \right) \end{aligned}$$

Using (6.6) and (6.7), we have from (6.5)

$$\begin{aligned} \frac{dI}{d\tau }+2DI=\frac{8E}{A\sqrt{Bl}}\left( M\left( \tau \right) -C\right) ^{\frac{3}{2}}-\frac{2C\pi m^{2}}{l}\phi _{m}^{2}( \tau )F( \chi ,\tau ) \end{aligned}$$

Combining the equations (3.35) and (3.36) we finally get

$$\begin{aligned} \frac{6\sqrt{Bl}}{A}\left( M\left( \tau \right) -C\right) ^{-\frac{1}{2}} \frac{dM\left( \tau \right) }{d\tau }+2D\frac{12\sqrt{Bl}}{A}\left( M\left( \tau \right) -C\right) ^{\frac{1}{2}}= & {} \frac{8E}{A\sqrt{Bl}}\left( M\left( \tau \right) -C\right) ^{\frac{3}{2}}\nonumber \\ \text {or,}\,\,\frac{dM\left( \tau \right) }{d\tau }+4D\left( M\left( \tau \right) -C\right)= & {} \frac{4E}{3Bl}\left( M\left( \tau \right) -C\right) ^{2}\nonumber \\ \text {i.e.,}\,\,\frac{d\left( M\left( \tau \right) -C\right) }{d\tau }+4D\left( M\left( \tau \right) -C\right)= & {} \frac{4E}{3Bl}\left( M\left( \tau \right) -C\right) ^{2} \end{aligned}$$
(6.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, S., Mondal, K.K., Chatterjee, P. et al. Propagation of dust-ion-acoustic solitary waves for damped modified Kadomtsev–Petviashvili–Burgers equation in dusty plasma with a q-nonextensive nonthermal electron velocity distribution. SeMA 78, 571–593 (2021). https://doi.org/10.1007/s40324-021-00242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-021-00242-5

Keywords

Mathematics Subject Classification

Navigation