Skip to main content
Log in

Some stability results of positive mass theorem for uniformly asymptotically flat 3-manifolds

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

In this paper, we show that for a sequence of orientable complete uniformly asymptotically flat 3-manifolds \((M_i, g_i)\) with nonnegative scalar curvature and ADM mass \(m(g_i)\) tending to zero, by subtracting some open subsets \(Z_i\), whose boundary area satisfies \(\textrm{Area}(\partial Z_i) \le C m(g_i)^{\frac{1}{2}- \varepsilon }\), for any base point \(p_i \in M_i{\setminus } Z_i\), \((M_i{\setminus } Z_i, g_i, p_i)\) converges to the Euclidean space \(({\mathbb {R}}^3, g_E, 0)\) in the \(C^0\) modulo negligible volume sense. Moreover, if we assume that the Ricci curvature is uniformly bounded from below, then \((M_i, g_i, p_i)\) converges to \(({\mathbb {R}}^3, g_E, 0)\) in the pointed Gromov–Hausdorff topology.

Résumé

Dans cet article, nous démontrons que pour une suite de variétés tridimensionnelles orientables, complètes et uniformément asymptotiquement plates \((M_i, g_i)\) avec courbure scalaire non négative et dont la masse ADM \(m(g_i)\) tend vers zéro, en enlevant certains sous-ensembles ouverts \(Z_i\), dont la zone de frontière satisfait \(\textrm{Aire}(\partial Z_i) \le C \cdot m(g_i)^{\frac{1}{2} - \varepsilon }\), pour tout point de base \(p_i \in M_i {\setminus } Z_i\), le triplet \((M_i {\setminus } Z_i, g_i, p_i)\) converge vers l’espace euclidien \(({\mathbb {R}}^3, g_E, 0)\) dans le sens \(C^0\), modulo un volume négligeable. De plus, si nous supposons que la courbure de Ricci est uniformément bornée inférieurement, alors le triplet \((M_i, g_i, p_i)\) converge vers \(({\mathbb {R}}^3, g_E, 0)\) pour la topologie de Gromov–Hausdorff pointée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brian Allen, Edward Bryden, and Demetre Kazaras. Stability of the positive mass theorem and torus rigidity theorems under integral curvature bounds. arXiv preprintarXiv:2210.04340, 2022.

  2. Richard Arnowitt, Stanley Deser, and Charles W Misner. Coordinate invariance and energy expressions in general relativity. Physical Review, 122(3):997, 1961.

    Article  ADS  MathSciNet  Google Scholar 

  3. Robert Bartnik. The mass of an asymptotically flat manifold. Communications on pure and applied mathematics, 39(5):661–693, 1986.

    Article  MathSciNet  Google Scholar 

  4. Hubert Bray and Felix Finster. Curvature estimates and the positive mass theorem. Comm. Anal. Geom., 10(2):291–306, 2002.

    Article  MathSciNet  Google Scholar 

  5. Hubert L. Bray, Demetre P. Kazaras, Marcus A. Khuri, and Daniel L. Stern. Harmonic functions and the mass of 3-dimensional asymptotically flat Riemannian manifolds. The Journal of Geometric Analysis, 32(6):1–29, 2022.

    Article  MathSciNet  Google Scholar 

  6. Hubert L. Bray. Proof of the Riemannian Penrose inequality using the positive mass theorem. Journal of Differential Geometry, 59(2):177–267, 2001.

    Article  ADS  MathSciNet  Google Scholar 

  7. Justin Corvino. A note on asymptotically flat metrics on \(\mathbb{R}^3\) which are scalar-flat and admit minimal spheres. Proceedings of the American Mathematical Society, 133(12):3669–3678, 2005.

    Article  MathSciNet  Google Scholar 

  8. Qin Deng. Hölder continuity of tangent cones in \(RCD(K,N)\) spaces and applications to non-branching. arXiv preprintarXiv:2009.07956, 2020.

  9. Conghan Dong and Antoine Song. Stability of Euclidean 3-space for the positive mass theorem. arXiv preprintarXiv:2302.07414, 2023.

  10. Felix Finster and Ines Kath. Curvature estimates in asymptotically flat manifolds of positive scalar curvature. Comm. Anal. Geom., 10(5):1017–1031, 2002.

    Article  MathSciNet  Google Scholar 

  11. Hans-Joachim Hein. On gravitational instantons. ProQuest Dissertations and Theses, pages 1–129, 2010.

  12. Gerhard Huisken and Tom Ilmanen. The inverse mean curvature flow and the Riemannian Penrose inequality. Journal of Differential Geometry, 59(3):353–437, 2001.

    Article  MathSciNet  Google Scholar 

  13. Lan-Hsuan Huang and Dan A Lee. Stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. Communications in Mathematical Physics, 337:151–169, 2015.

    Article  ADS  MathSciNet  Google Scholar 

  14. Demetre Kazaras, Marcus Khuri, and Dan Lee. Stability of the positive mass theorem under Ricci curvature lower bounds. arXiv preprintarXiv:2111.05202, 2021.

  15. Dan A Lee. On the near-equality case of the positive mass theorem. Duke Math. J., 148(1):63–80, 2009.

    Article  ADS  MathSciNet  Google Scholar 

  16. Yu Li. Ricci flow on asymptotically Euclidean manifolds. Geometry & Topology, 22(3):1837–1891, 2018.

    Article  ADS  MathSciNet  Google Scholar 

  17. Man-Chun Lee, Aaron Naber, and Robin Neumayer. \( d_p \) convergence and \(\epsilon \)-regularity theorems for entropy and scalar curvature lower bounds. arXiv preprintarXiv:2010.15663, 2020.

  18. Dan A. Lee and Christina Sormani. Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds. Journal für die reine und angewandte Mathematik (Crelles Journal), 2014(686):187–220, 2014.

    Article  MathSciNet  Google Scholar 

  19. Peter Petersen. Riemannian Geometry. Springer International Publishing AG, 3rd edition, 2016.

    Book  Google Scholar 

  20. Xiaochun Rong. Collapsed manifolds with bounded sectional curvature and applications. Surveys in differential geometry, 11(1):1–24, 2006.

    Article  MathSciNet  Google Scholar 

  21. Richard M. Schoen. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. Topics in calculus of variations, pages 120–154, 1989.

  22. Christina Sormani. Conjectures on convergence and scalar curvature. In Perspectives in Scalar Curvature, pages 645–722. World Scientific, 2023.

  23. Miles Simon and Peter M. Topping. Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. Geometry & Topology, 25(2):913–948, 2021.

    Article  MathSciNet  Google Scholar 

  24. Daniel L. Stern. Scalar curvature and harmonic maps to \( S^{1}\). Journal of Differential Geometry, 122(2):259–269, 2022.

    Article  MathSciNet  Google Scholar 

  25. Richard Schoen and Shing-Tung Yau. Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci., 76(3):1024–1025, 1979.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard Schoen and Shing-Tung Yau. On the proof of the positive mass conjecture in general relativity. Communications in Mathematical Physics, 65:45–76, 1979.

    Article  ADS  MathSciNet  Google Scholar 

  27. Edward Witten. A new proof of the positive energy theorem. Communications in Mathematical Physics, 80(3):381–402, 1981.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express gratitude to his advisor, Prof. Xiuxiong Chen, for his encouragement and support. The author thanks Prof. Hubert Bray, Prof. Marcus Khuri and Prof. Antoine Song for their interests in this work and valuable discussions, and Hanbing Fang for introducing the reference [11]. The author also thanks the referee for providing very helpful and detailed comments and suggestions that led to the new Definition 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghan Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C. Some stability results of positive mass theorem for uniformly asymptotically flat 3-manifolds. Ann. Math. Québec (2024). https://doi.org/10.1007/s40316-024-00226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40316-024-00226-7

Keywords

Mathematics Subject Classification

Navigation