Skip to main content
Log in

State Feedback Decoupling Control of a Control Moment Gyroscope

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Control moment gyroscope (CMG) is an actuator commonly used in attitude control of satellites and spacecrafts, as well as in stabilization of marine vessels and unmanned vehicles. It is a nonlinear multivariable system and presents considerable coupling depending on the chosen operating point, i.e., the gyroscope gimbals angles. First, the complete modeling of a CMG with four degrees of freedom is shown using the Lagrangian dynamic formulation, resulting in a set of four nonlinear equations. Further, the system is linearized around an equilibrium point, resulting in a coupled two-input two-output system. Next, the application of a linear state feedback decoupling control to this linearized system is developed based on the classical Falb–Wolovich method. Aiming to deal with stationary errors, simple decentralized proportional-integral controllers are designed for each channel. Simulation and practical results with a didactic control moment gyroscope are presented in order to validate the methodology. The resulting system has good decoupling characteristics and presents satisfactory responses in terms of setpoint tracking and disturbance rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Some gimbal axes in the figure are shifted from their origin to ease visualization.

  2. The plant has only two external torques provided by the two motors \(\tau _{4_{ext}} = T_1\) and \(\tau _{3_{ext}} = T_2\), and therefore \(\tau _{2_{ext}} = \tau _{1_{ext}} =0\).

References

  • Abbas, H. S., Ali, A., Hashemi, S. M., & Werner, H. (2014). LPV state-feedback control of a control moment gyroscope. Control Engineering Practice, 24, 129–137.

    Article  Google Scholar 

  • Bhat, S., & Tiwari, P. (2009). Controllability of spacecraft attitude using control moment gyroscopes. IEEE Transactions on Automatic Control, 54(3), 585–590.

    Article  MathSciNet  Google Scholar 

  • Craig, J. J. (1989). Introduction to Robotics: Mechanics and Control (Vol. 2). Boston: Addison-Wesley Publishing.

  • Durand, S., Boisseau, B., Martinez-Molina, J., Marchand, N., & Raharijaona, T. (2014). Event-based LQR with integral action. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, pp. 1–7.

  • Falb, P. L., & Wolovich, W. (1967). Decoupling in the design and synthesis of multivariable control systems. IEEE Transactions on Automatic Control, 12(6), 651–659.

    Article  Google Scholar 

  • Gagne, J., Piccin, O., Laroche, E., Diana, M., & Gangloff, J. (2012). Gyrolock: Stabilizing the heart with control moment gyroscope (cmg) - from concept to first in vivo assessments. IEEE Transactions on Robotics, 28(4), 942–954.

    Article  Google Scholar 

  • Ishikawa, K., & Sakamoto, N. (2014). Optimal control for control moment gyros - center-stable manifold approach. In: The 53rd IEEE Conference on Decision and Control 2014, (pp. 5874–5879).

  • Kurokawa, H. (2007). Survey of theory and steering laws of single-gimbal control moment gyros. Journal of Guidance, Control, and Dynamics, 30(5), 1331–1340.

    Article  Google Scholar 

  • Parks, T. R. (1999). Manual For Model 750: Control Moment Gyroscope. Bell Canyon: Addison-Wesley Publishing.

    Google Scholar 

  • Reyhanoglu, M., & van de Loo, J. (2006). State feedback tracking of a nonholonomic control moment gyroscope. In: The 45th IEEE Conference on Decision and Control 2006, (pp. 6156–6161). doi:10.1109/CDC.2006.377590.

  • Townsend, N., & Shenoi, R. (2014). Control strategies for marine gyrostabilizers. IEEE Journal of Oceanic Engineering, 39(2), 243–255.

    Article  Google Scholar 

  • Wang, Q. (2002). Decoupling Control. Lecture Notes in Control and Information Sciences. Heidelberg, Berlin: Springer.

    Google Scholar 

  • Yetkin, H., Kalouche, S., Vernier, M., Colvin, G., Redmill, K., & Ozguner, U. (2014). Gyroscopic stabilization of an unmanned bicycle. In: American Control Conference, (pp. 4549–4554).

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the Grant 2013/25605-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno A. Angélico.

Appendix

Appendix

The full set of nonlinear equations resulting from the modeling is presented in Sect. 2 and related to Eqs. (3, 4, 5, 6). The inertia parameters are presented in Table 1.

$$\begin{aligned}&\tau _{4_{ext}} - J_{D} \left[ \dot{\omega }_{4}+\cos \left( \theta _{3}\right) \dot{\omega }_{2}+\cos \left( \theta _{2}\right) \sin \left( \theta _{3}\right) \dot{\omega }_{1}\right. \nonumber \\&\quad - \sin \left( \theta _{3}\right) \omega _{3}\omega _{2} + \cos \left( \theta _{2}\right) \cos \left( \theta _{3}\right) \omega _{3}\omega _{1}\nonumber \\&\quad - \left. \sin \left( \theta _{2}\right) \sin \left( \theta _{3}\right) \omega _{2}\omega _{1}\right] =0 \end{aligned}$$
(30)
$$\begin{aligned}&\tau _{3_{ext}} - \left( I_{C} + I_{D} \right) \dot{\omega }_{3} + \left( I_{C} + I_{D} \right) \sin \left( \theta _{2}\right) \dot{\omega }_{1} \nonumber \\&\quad + \dfrac{\left( I_{D} + K_{C} - J_{C} - J_{D} \right) }{2} \sin \left( 2\theta _{3}\right) \omega _{2}^2 \nonumber \\&\quad + \left( J_{C} + J_{D} - I_{D} - K_{C} \right) \cos ^2\left( \theta _{2}\right) \cos \left( \theta _{3}\right) \sin \left( \theta _{3}\right) \omega _{1}^2 \nonumber \\&\quad + \left( I_{C} + J_{C} + J_{D} - K_{C} \right) \cos \left( \theta _{2}\right) \omega _{1}\omega _{2} \nonumber \\&\quad + 2 \left( I_{D} + K_{C} - J_{C} - J_{D} \right) \cos \left( \theta _{2}\right) \sin ^2\left( \theta _{3}\right) \omega _{1}\omega _{2}\nonumber \\&\quad +J_{D}\cos \left( \theta _{2}\right) \cos \left( \theta _{3}\right) \omega _{1}\omega _{4} - J_{D}\sin \left( \theta _{3}\right) \omega _{2}\omega _{4}=0 \end{aligned}$$
(31)
$$\begin{aligned}&\tau _{2_{ext}} - {J_D}\cos \left( {{\theta _3}} \right) {{\dot{\omega }}_4} - \left( J_B + J_C + J_D \right) {{\dot{\omega }}_2} \nonumber \\&\quad + \left( J_C + J_D - K_C - I_D \right) \sin ^2 \left( {{\theta _3}} \right) {{\dot{\omega }}_2} + \nonumber \\&\quad + \left( K_C + I_D - J_C - J_D \right) \cos \left( {{\theta _2}} \right) \cos \left( {{\theta _3}} \right) \sin \left( {{\theta _3}} \right) {{\dot{\omega }}_1} \nonumber \\&\quad + \dfrac{ \left( I_B + I_C - K_B - K_C \right) }{2} \sin \left( {2{\theta _2}} \right) \omega _1^2 \nonumber \\&\quad + \left( K_C + I_D - J_C - J_D \right) \cos \left( {{\theta _2}} \right) \sin \left( {{\theta _2}} \right) \sin ^2 \left( {{\theta _3}} \right) \omega _1^2 \nonumber \\&\quad + \left( J_C + J_D - K_C - I_D \right) \sin \left( {2{\theta _3}} \right) {\omega _2}{\omega _3} \nonumber \\&\quad + \left( K_C - I_C - J_C - J_D \right) \cos \left( {{\theta _2}} \right) {\omega _1}{\omega _3} \nonumber \\&\quad + 2 \left( J_C + J_D - K_C - I_D \right) \cos \left( {{\theta _2}} \right) \sin ^2 \left( {{\theta _3}} \right) {\omega _1}{\omega _3} \nonumber \\&\quad + {J_D}\sin \left( {{\theta _3}} \right) {\omega _3}{\omega _4} - {J_D}\sin \left( {{\theta _2}} \right) \sin \left( {{\theta _3}} \right) {\omega _1}{\omega _4} =0 \end{aligned}$$
(32)
$$\begin{aligned}&\tau _{1_{ext}} - {J_D}\cos \left( {{\theta _2}} \right) \sin \left( {{\theta _3}} \right) {{\dot{\omega }}_4} + \left( I_C + I_D \right) \sin \left( {{\theta _2}} \right) {{\dot{\omega }}_3} \nonumber \\&\quad + \left( K_C + I_D - J_C - J_D \right) \cos \left( {{\theta _2}} \right) \cos \left( {{\theta _3}} \right) \sin \left( {{\theta _3}} \right) {{\dot{\omega }}_2} \nonumber \\&\quad - \left( K_A + K_B + K_C + I_D \right) {{\dot{\omega }}_1}\nonumber \\&\quad + \left( K_B + K_C - I_B - I_C \right) \sin ^2 \left( {{\theta _2}} \right) {{\dot{\omega }}_1} \nonumber \\&\quad + \left( K_C + I_D - J_C - J_D \right) \cos ^2 \left( {{\theta _2}} \right) \sin ^2 \left( {{\theta _3}} \right) {{\dot{\omega }}_1}\nonumber \\&\quad + \left( J_C + J_D - K_C - I_D \right) \cos \left( {{\theta _3}} \right) \sin \left( {{\theta _2}} \right) \sin \left( {{\theta _3}} \right) \omega _2^2 \nonumber \\&\quad + 2 ( K_C + I_D - J_C - J_D ) \cos ^2 \left( {{\theta _2}} \right) \cos \left( {{\theta _3}} \right) \sin \left( {{\theta _3}} \right) {\omega _1}{\omega _3} \nonumber \\&\quad + \left( K_C + I_C + 2 I_D - J_C - J_D \right) \cos \left( {{\theta _2}} \right) {\omega _2}{\omega _3} \nonumber \\&\quad + 2 \left( J_C + J_D - K_C - I_D \right) \cos \left( {{\theta _2}} \right) {\sin ^2}\left( {{\theta _3}} \right) {\omega _2}{\omega _3}\nonumber \\&\quad + \left( K_B + K_C - I_B - I_C \right) \sin \left( {2{\theta _2}} \right) {\omega _1}{\omega _2} \nonumber \\&\quad + 2 ( J_C + J_D - K_C - I_D ) \cos \left( {{\theta _2}} \right) \sin \left( {{\theta _2}} \right) {\sin ^2}\left( {{\theta _3}} \right) {\omega _1}{\omega _2} \nonumber \\&\quad + {J_D}\sin \left( {{\theta _2}} \right) \sin \left( {{\theta _3}} \right) {\omega _2}{\omega _4}\nonumber \\&\quad - {J_D}\cos \left( {{\theta _2}} \right) \cos \left( {{\theta _3}} \right) {\omega _3}{\omega _4} =0 \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angélico, B.A., Barbosa, F.S. & Toriumi, F.Y. State Feedback Decoupling Control of a Control Moment Gyroscope. J Control Autom Electr Syst 28, 26–35 (2017). https://doi.org/10.1007/s40313-016-0277-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0277-8

Keywords

Navigation