Skip to main content
Log in

Non-parametric test of recurrent cumulative incidence functions for competing risks models

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Recurrent competing risks data are common in survival studies. In such contexts the effects of competing risks on lifetime outcomes are important problem of study. In this work we introduce recurrent cumulative incidence function and then propose a non-parametric test for comparing recurrent cumulative incidence functions. Asymptotic distribution of the test statistic is derived. A simulation study is carried out to assess the performance of the proposed test statistic. The proposed method is applied to an auto-mobile warranty data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10(4), 1100–1120 (1982)

    Article  MathSciNet  Google Scholar 

  2. Cook, R.J., Lawless, J.F., Nadeau, C.: Robust tests for treatment comparisons based on recurrent event responses. Biometrics 52(2), 557–571 (1996)

    Article  Google Scholar 

  3. Dauxois, J.Y., Sencey, S.: Non-parametric tests for recurrent events under competing risks. Scand. J. Stat. 36(4), 649–670 (2009)

    Article  MathSciNet  Google Scholar 

  4. Dong, H., Robison, L.L., Leisenring, W.M., Martin, L.J., Armstrong, G.T., Yasui, Y.: Estimating the burden of recurrent events in the presence of competing risks: the method of mean cumulative count. Am. J. Epidemiol. 181(7), 532–540 (2015)

    Article  Google Scholar 

  5. Ghosh, D.: Accelerated rates regression models for recurrent failure time data. Lifetime Data Anal. 10(3), 247–261 (2004)

    Article  MathSciNet  Google Scholar 

  6. Gouskova, N.A., Lin, F.C., Fine, J.P.: Nonparametric analysis of competing risks data with event category missing at random. Biometrics 73(1), 104–113 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hyun, S., Sun, Y., Sundaram, R.: Assessing cumulative incidence functions under the semiparametric additive risk model. Stat. Med. 28(22), 2748–2768 (2009)

    Article  MathSciNet  Google Scholar 

  8. Lawless, J.F., Nadeau, C.: Some simple robust methods for the analysis of recurrent events. Technometrics 37(2), 158–168 (1995)

    Article  MathSciNet  Google Scholar 

  9. Lin, D.: Non-parametric inference for cumulative incidence functions in competing risks studies. Stat. Med. 16(8), 901–910 (1997)

    Article  Google Scholar 

  10. Lin, D., Wei, L., Ying, Z.: Accelerated failure time models for counting processes. Biometrika 85(3), 605–618 (1998)

    Article  MathSciNet  Google Scholar 

  11. Lin, D.Y., Wei, L.J., Yang, I., Ying, Z.: Semiparametric regression for the mean and rate functions of recurrent events. J. R. Stat. Soc. Ser. B 62(4), 711–730 (2000)

    Article  MathSciNet  Google Scholar 

  12. Pepe, M.S., Cai, J.: Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates. J. Am. Stat. Assoc. 88(423), 811–820 (1993)

    Article  Google Scholar 

  13. Sankaran, P., Anisha, P.: Shared frailty model for recurrent event data with multiple causes. J. Appl. Stat. 38(12), 2859–2868 (2011)

    Article  MathSciNet  Google Scholar 

  14. Sankaran, P., Anisha, P.: Additive hazards models for gap time data with multiple causes. Stat. Prob. Lett. 82(7), 1454–1462 (2012)

    Article  MathSciNet  Google Scholar 

  15. Somboonsavatdee, A., Sen, A.: Parametric inference for multiple repairable systems under dependent competing risks. Appl. Stochastic Models Bus. Ind. 31(5), 706–720 (2015)

    Article  MathSciNet  Google Scholar 

  16. Taylor, L.L., Pena, E.A.: Parametric estimation in a recurrent competing risks model. J. Iran. Stat. Soc. 12(1), 153 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Taylor, L.L., Pena, E.A.: Nonparametric estimation with recurrent competing risks data. Lifetime Data Anal. 20(4), 514–537 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wang, M.C., Chang, S.H.: Nonparametric estimation of a recurrent survival function. J. Am. Stat. Assoc. 94(445), 146–153 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees and editor for their constructive comments. The first author thanks INSPIRE, Department of Science and Technology, Government of India for providing financial support. The second author thanks KSCSTE, Government of Kerala for providing financial support.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2.1

To find the asymptotic distribution of the test statistic \(Z(\tau )\), first consider the quantity

$$\begin{aligned} v_l(t)=\int _{0}^{t} w(u)d\left( {\hat{F}}_l(u)-\frac{{\hat{F}}(u)}{k}\right) ,l=1,2,...,k. \end{aligned}$$
(A-1)

After adding and subtracting \(\int _{0}^{t} w(u)dF_{l}(u)+ \int _{0}^{t} w(u)\frac{dF(u)}{k}\), (A-1) can be modified as,

$$\begin{aligned} v_l(t)&=\int _{0}^{t}w(u)d({\hat{F}}_{l}(u)-\frac{{\hat{F}}(u)}{k}) +\int _{0}^{t}w(u)dF_l(u)-\int _{0}^{t}w(u)dF_l(u)\nonumber \\&\quad +\int _{0}^{t}w(u) \frac{dF(u)}{k}-\int _{0}^{t}w(u)\frac{dF(u)}{k}.\nonumber \\&= \int _{0}^{t} w(u)d\left( {\hat{F}}_l(u)-F_l(u)\right) +\int _{0}^{t} w(u)d\left( F_l(u)-\frac{F(u)}{k}\right) \nonumber \\&\quad +\int _{0}^{t}\frac{w(u)}{k}d\left( F(u)-{\hat{F}}(u)\right) . \end{aligned}$$
(A-2)

under \(H_0\), \(F_l(t)=\frac{F(t)}{k}\). Then second term in the (A-2) becomes zero. Then

$$\begin{aligned} v_l(t )=\int _{0}^{t}w(u)d\left( {\hat{F}}_l(u)-F_l(u)\right) +\int _{0}^{t}\frac{w(u)}{k}d\left( F(u)-{\hat{F}}(u)\right) . \end{aligned}$$
(A-3)

It can be shown that the difference between \({\hat{F}}_l(t)\) and \(F_{l}(t)\) can be approximated by the sum of independent and identically distributed random variables. For this we need to prove that

$$\begin{aligned} \hat{\Lambda _{l}}(t)-\Lambda _{l}(t)=-\frac{1}{n}\sum _{i=1}^{n}\psi _{il}(t)+o_{p}(n^{-\frac{1}{2}}). \end{aligned}$$
(A-4)

This can be shown by the similar method used in the Wang and Chang [18]. Note that

$$\begin{aligned} {\hat{F}}_{l}(t)-F_{l}(t)=\int _{0}^{t}S(u)d\left\{ \hat{\Lambda _{l}}(u)-\Lambda _{l}(u) \right\} +\int _{0}^{t} \left\{ {\hat{S}}(u)-S(u)\right\} d{{\hat{\Lambda }}}_{l}(u). \end{aligned}$$
(A-5)

We can shown that \({\hat{F}}_{l}(t)-F_{l}(t)\) is sum of inedependent and identically distributed random varibles by applying (A-4) in (A-5) and following the techniques used in Hyun et al. [7]. Then,

$$\begin{aligned} {\hat{F}}_l(t)-F_l(t)=-n^{-1}\sum _{i=1}^{n}\epsilon _{li}(t)+o_p(n^{-\frac{1}{2}}), \end{aligned}$$
(A-6)

where \(\epsilon _{li}(t)=\int _{0}^{t}[\sum _{l=1}^{k}F^{c}_{l}(t,u)+S(u)]\psi _{il}(u)\) and \(F^{c}_{l}(t,u)=F_{l}(t)-F_{l}(u)\). For fixed t, \(\epsilon _{li}(t)\) are independent and identically distributed mean zero random variables and \(\sqrt{n}({\hat{F}}_l(t)-F_l(t))\) follows a mean zero Gaussian process with variance \(\sigma ^{2}_{l}(t)=E(\epsilon _{li}(t))^{2}\) and variance-covariance function \(\sigma _l(t_1,t_2)=E[\epsilon _{li}(t_1)\epsilon _{li}(t_2)],l=1,2,...,k.\)

From Wang and Chang [18], we can shown that the \({\hat{F}}(t)-F(t)\) is a sum of independent and identically distributed random variables.

$$\begin{aligned} {\hat{F}}(t)-F(t)=-n^{-1}\sum _{i=1}^{n}S(t)\phi _{i}(t)+o_p(n^{-\frac{1}{2}}), \end{aligned}$$
(A-7)

where \(\phi _i(t)=\int _{0}^{t}\{H_a(u)\}^{-2}\{\frac{a_i}{m^{*}_{i}}\sum _{j=1}^{m^{*}_{i}} I(y_{ij}\ge u )\}dG_a(u)-\frac{a_iI(m_i\ge 2)}{m^{*}_{i}}\sum _{j=1}^{m^{*}_{i}}\frac{1}{H_a(y_{ij})}I(y_{ij} <t)\).

The random variables \(S(t)\phi _{i}(t)\) are uniformly bounded in \(0 \le t \le t^{*}\) when \(a_{i}\) is bounded by a constant, where \(t^{*}\) is a non negative constant satisfying \(t^{*} < sup \{ t: S(t)G(t) >0\}\). Then by the multivariate central limit theorem, the finite dimensional distributions of the random process \(\sqrt{n}\{{\hat{F}}(t)-F(t)\}\) follows mean zero Gaussian process with variance covariance function \(\sigma (t_1,t_2)\).

Then

$$\begin{aligned} v_l(t)&=-\int _{0}^{t}w(u)d\left( n^{-1}\sum _{i=1}^{n}\epsilon _{li}(u)\right) +\int _{0}^{t}\frac{w(u)}{k}d\left( n^{-1}\sum _{i=1}^{n}S(u)\phi _{i}(u)\right) +o_p(n^{-\frac{1}{2}}).\nonumber \\&= -\frac{1}{n}\left[ \int _{0}^{t}w(u)d(\sum _{i=1}^{n}\epsilon _{li}(u))-\int _{0}^{t}\frac{w(u)}{k}d(\sum _{i=1}^{n}S(u)\phi _{i}(u))\right] +o_p(n^{-\frac{1}{2}}).\nonumber \\&= -\frac{1}{n} \sum _{i=1}^{n}\int _{0}^{t}\left[ w(u)d\left( \epsilon _{li}(u)-\frac{S(u)\phi _{i}(u)}{k}\right) \right] +o_p(n^{-\frac{1}{2}}). \end{aligned}$$
(A-8)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisuma, M.S., Sankaran, P.G. Non-parametric test of recurrent cumulative incidence functions for competing risks models. METRON 80, 331–342 (2022). https://doi.org/10.1007/s40300-022-00228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-022-00228-x

Keywords

Navigation