Skip to main content
Log in

Detumbling a Flexible Tumbling Target Using a Space Robot in Post-capture Phase

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In recent years, the sustained growth of space launch missions has inevitably led to a rapid increase in space debris, which has attracted extensive attention to the capture and removal of space debris. This paper presents a new strategy for detumbling a flexible tumbling target in the post-capture phase using a flexible-base space robot (also called a chaser), which involves trajectory optimization and composite control of the chaser. Based on the dynamic equation of the combined system, the trajectories of the chaser base and the manipulator’s joints are parameterized by quintic polynomial curves, and then are simultaneously optimized for the collision avoidance of the combined system and the reduction of panel deformation, control energy, and mission duration. The Pareto-optimal solutions of the optimization problem are obtained by the multi-objective particle swarm optimization (MOPSO) algorithm. The composite control scheme, composed of a trajectory tracking controller and a vibration suppression controller, is used for the chaser to detumble the target along the planned trajectories, stabilize its base attitude, and eliminate the residual vibration of the flexible panels. Two representative cases are used to verify the effectiveness and robustness of the proposed detumbling strategy for the target with parameter uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mark, S., Kamath, S.: Review of active space debris removal methods. Space Policy 47, 194 (2019). https://doi.org/10.1016/j.spacepol.2018.12.005

    Article  Google Scholar 

  2. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001

    Article  Google Scholar 

  3. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002

    Article  Google Scholar 

  4. Hakima, H., Emami, M.R.: Deorbiter CubeSat system engineering. J. Astron. Sci. 67, 1600 (2020). https://doi.org/10.1007/s40295-020-00220-5

    Article  Google Scholar 

  5. Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1169–1174. IEEE (2000). https://doi.org/10.1109/ROBOT.2000.844757

  6. Friend, R.B.: Orbital Express program summary and mission overview. In: Proc. SPIE 6958, Sensors and Systems for Space Applications II, 695803. SPIE (2008). https://doi.org/10.1117/12.783792

  7. Liu, Y., Yu, Z., Liu, X., Cai, G.: Active detumbling technology for high dynamic non-cooperative space targets. Multibody Sys. Dyn. 47(1), 21 (2019). https://doi.org/10.1007/s11044-019-09675-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Siciliano, B., Sciavicco, L., Villani, G., Oriolo, G.: Robotics Modelling, Planning and Control. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1

    Google Scholar 

  9. Rong, B., Rui, X., Tao, L., Wang, G.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98, 1519 (2019). https://doi.org/10.1007/s11071-019-05191-3

    Article  Google Scholar 

  10. Basmadji, F., Seweryn, K., Sasiadek, J.: Space robot motion planning in the presence of nonconserved linear and angular momenta. Multibody Sys. Dyn. 50, 71 (2020). https://doi.org/10.1007/s11044-020-09753-x

    Article  MathSciNet  MATH  Google Scholar 

  11. James, F., Shah, S., Singh, A., Krishna, K., Misra, A.: Reactionless maneuvering of a space robot in precapture phase. J. Guid. Control. Dyn. 39(10), 2419 (2016). https://doi.org/10.2514/1.G001828

    Article  Google Scholar 

  12. Hu, J., Wang, T.: Minimum base attitude disturbance planning for a space robot during target capture. ASME J. Mech. Robot. 10(5), 051002 (2018). https://doi.org/10.1115/1.4040435

    Article  Google Scholar 

  13. Wang, M., Luo, J., Zheng, L., Yuan, J., Walter, U.: Generate optimal grasping trajectories to the end-effector using an improved genetic algorithm. Adv. Space Res. 66(7), 1803 (2020). https://doi.org/10.1016/j.asr.2020.06.022

    Article  Google Scholar 

  14. Seddaoui, A., Saaj, C.: Combined nonlinear \(h_{\infty }\) controller for a controlled-floating space robot. J. Guid. Control. Dyn. 42(8), 1878 (2019). https://doi.org/10.2514/1.G003811

    Article  Google Scholar 

  15. Zhou, Z., Zhang, Y., Zhou, D.: Robust prescribed performance tracking control for free-floating space manipulators with kinematic and dynamic uncertainty. Aerosp. Sci. Technol. 71, 568 (2017). https://doi.org/10.1016/j.ast.2017.10.013

    Article  Google Scholar 

  16. Muralidharan, V., Emami, M.R.: Rendezvous and attitude synchronization of a space manipulator. J. Astronaut. Sci. 66, 100 (2019). https://doi.org/10.1007/s40295-019-00162-7

    Article  Google Scholar 

  17. Wang, M., Luo, J., Yuan, J., Walter, U.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92, 1023 (2018). https://doi.org/10.1007/s11071-018-4106-4

    Article  Google Scholar 

  18. Aghili, F.: Optimal trajectories and robot control for detumbling a non-cooperative satellite. J. Guid. Control. Dyn. 43(5), 981 (2020). https://doi.org/10.2514/1.G004758

    Article  Google Scholar 

  19. Gangapersaud, R., Liu, G., de Ruiter, A.: Detumbling a non-cooperative space target with model uncertainties using a space manipulator. J. Guid. Control. Dyn. 42(4), 910 (2019). https://doi.org/10.2514/1.G003111

    Article  Google Scholar 

  20. Zhan, B., Jin, M., Yang, G., Zhang, C.: A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance. Adv. Space Res. 66(4), 785 (2020). https://doi.org/10.1016/j.asr.2020.05.045

    Article  Google Scholar 

  21. Zhao, Q., Duan, G.: Integrated design of trajectory tracking and inertia property identification for post-capture of non-cooperative target. Aerosp. Sci. Technol. 95, 105437 (2019). https://doi.org/10.1016/j.ast.2019.105437

    Article  Google Scholar 

  22. Huang, P., Wang, M., Meng, Z., Zhang, F., Liu, Z.: Attitude takeover control for post-capture of target spacecraft using space robot. Aerosp. Sci. Technol. 51, 171 (2016). https://doi.org/10.1016/j.ast.2016.02.006

    Article  Google Scholar 

  23. She, Y., Sun, J., Li, S., Li, W., Song, T.: Quasi-model free control for the post-capture operation of a non-cooperative target. Acta Astronaut. 147, 59 (2018). https://doi.org/10.1016/j.actaastro.2018.03.041

    Article  Google Scholar 

  24. Zhang, X., Xu, T., Wei, C.: Novel finite-time attitude control of postcapture spacecraft with input faults and quantization. Adv. Space Res. 65(1), 297 (2020). https://doi.org/10.1016/j.asr.2019.09.030

    Article  Google Scholar 

  25. Hirano, D., Fujii, Y., Abiko, S., Lampariello, R., Nagaoka, K., Yoshida, K.: Vibration suppression control of a space robot with flexible appendage based on simple dynamic model. In: IEEE International Conference on Intelligent Robots and Systems (IROS2013) (Tokyo, Japan, 2013), pp. 789–794.

  26. Xu, W., Meng, D., Chen, Y., Qian, H., Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing larger flexible spacecraft. Multibody Sys. Dyn. 32, 357 (2014). https://doi.org/10.1007/s11044-013-9389-0

    Article  MATH  Google Scholar 

  27. Meng, D., Wang, X., Xu, W., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30 (2017). https://doi.org/10.1016/j.jsv.2017.02.039

    Article  Google Scholar 

  28. Stolfi, A., Gasbarri, P., Satatini, M.: A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite. Acta Astronaut. 148, 317 (2018). https://doi.org/10.1016/j.actaastro.2018.04.028

    Article  Google Scholar 

  29. Stolfi, A., Gasbarri, P., Misra, A.: A two-arm flexible space manipulator system for post-grasping manipulation operations of a passive target object. Acta Astronaut. 175, 66 (2020). https://doi.org/10.1016/j.actaastro.2020.04.045

    Article  Google Scholar 

  30. Yu, Z., Gao, M., Cai, G.: Active control of a 6-DOF space robot with flexible panels using singular perturbation method. J. Astronaut. Sci. 66, 83 (2019). https://doi.org/10.1007/s40295-019-00166-3

    Article  Google Scholar 

  31. Singh, S., Mooij, E.: Robust control for active debris removal of a large flexible space structure. In: AIAA Scitech 2020 Forum, AIAA 2020-2077. (2020). https://doi.org/10.2514/6.2020-2077

  32. Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Sys. Dyn. 1, 189 (1997). https://doi.org/10.1023/A:1009773505418

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Y., Liu, X., Cai, G., Chen, J.: Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase. Multibody Sys. Dyn. 52, 281 (2020). https://doi.org/10.1007/s11044-020-09774-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, Y., Jia, Q., Chen, G., Wang, Y., Sun, H.: Study of rapid collision detection algorithm for manipulator. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 934–938. IEEE (2015). https://doi.org/10.1109/ICIEA.2015.7334244

  35. Chu, X., Hu, Q., Zhang, J.: Path planning and collision avoidance for a multi-arm space maneuverable robot. IEEE Trans. Aerosp. Electron. Syst. 54(1), 217 (2018). https://doi.org/10.1109/TAES.2017.2747938

    Article  Google Scholar 

  36. Ericson, C.: Real-Time Collision Detection. CRC Press, Boca Raton (2005)

    Google Scholar 

  37. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120-127. IEEE (2007). https://doi.org/10.1109/SIS.2007.368035

  38. Coello, C., Lechuga, M.: In Proceedings of the IEEE Congress on Computational Intelligence (Honolulu, USA, 2002), pp. 1051–1056. https://doi.org/10.1109/CEC.2002.1004388

  39. Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256 (2004). https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  40. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol. 3410. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35

  41. Sanz, A., Etxebarria, V.: Experimental control of a two-dof flexible robot manipulator by optimal and sliding methods. J. Intell. Rob. Syst. 46, 95 (2006). https://doi.org/10.1007/s10846-006-9041-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772187 and 12172215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Liu or Guoping Cai.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X. & Cai, G. Detumbling a Flexible Tumbling Target Using a Space Robot in Post-capture Phase. J Astronaut Sci 69, 1048–1075 (2022). https://doi.org/10.1007/s40295-022-00334-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00334-y

Keywords

Navigation