Skip to main content
Log in

Active Control of a 6-DOF Space Robot with Flexible Panels Using Singular Perturbation Method

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper, active control of a 6-DOF space robot with flexible panels using singular perturbation method is investigated. Dynamic model of the system is established by using the Jourdain’s velocity variation principle. Dynamic equation of the system is decomposed into a slow subsystem and a fast subsystem by using the singular perturbation method. A composite controller is used to make the space robot reach a specified position and suppress the elastic vibration of the panels. Simulation results indicate that the proposed model is effective to describe the dynamics of space robot; the designed composite controller can effectively make the robot reach a specified position and the elastic vibration of the panels may be suppressed simultaneously; the fast controller has a great influence on the control effect of the space robot system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rutkovskii, V.Y., Sukhanov, V.M., Glumov, V.M.: Motion equations and control of the free-flying space manipulator in the reconfiguration mode. Automat. Rem. Contrl. 70(1), 70–86 (2010)

    Article  MATH  Google Scholar 

  2. Subir, K.S.: A unified approach to space robot kinematics. IEEE Trans. Robot. Autom. 12(3), 401–405 (1996)

    Article  Google Scholar 

  3. Caron, M., Modi, V.J., Misra, A.K.: Order-n formulation and dynamics of multi-unit flexible space manipulators. Nonlinear Dyn. 17(4), 347–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kumar, A., Pathak, P.M., Sukavanam, N.: Reduced model based control of two link flexible space robot. Intell. Control. Autom. 2(2), 112–120 (2011)

    Article  Google Scholar 

  5. Zarafshan, P., Moosavian, S.A.A.: Control of a space robot with flexible members. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai (2011)

  6. Parlaktuna, O., Ozkan, M.: Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot. Auton. Syst. 46(3), 185–193 (2004)

    Article  Google Scholar 

  7. Kino, M., Goden, T., Murakami, T., Ohnishi, K.: Reaction torque feedback based vibration control in multi-degrees of freedom motion system. In: Proceedings of the 24th Annual Conference of the IEEE, Aachen (1998)

  8. Siciliano, B., Book, W.J.: A singular perturbation approach to control of light-weight flexible manipulators. Int. J. Robot. Res. 7(4), 79–90 (1988)

    Article  Google Scholar 

  9. Amjadi, F.R., Khadem, S.E., Khaloozadeh, H.: Position and velocity control of a flexible joint robot manipulator via a fuzzy controller based on singular perturbation analysis. In: IEEE International Conference on Fuzzy Systems, Australia (2001)

  10. Vossoughi, G.R., Karimzadeh, A.: Impedance control of a two degree-of-freedom planar flexible link manipulator using singular perturbation theory. Robotica. 24(3), 221–228 (2006)

    Article  Google Scholar 

  11. Karimi, B., Ghateei, M.: Singular perturbation approach to RBNN adaptive control of unknown flexible joint manipulators. Buletinul Institutului Politehnic din Iaşi, automatic control and computer science section. (3), 113–127 (2011)

  12. Liu, X.F., Li, H.Q., Chen, Y.J., Cai, G.P., Wang, X.: Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody Sys.Dyn. 33(3), 315–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, J.Z.: Computational dynamics of multi-body systems. High Education Press (1999) (in Chinese)

  14. Wittenburg, J.: Dynamics of multi-body systems. Spring (2007)

  15. Bae, D., Han, J., Yoo, H.: A generalized recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 27(3), 93–315 (1999)

    Article  Google Scholar 

  16. Qi, Z.H., Xu, Y.S., Luo, X.M., Yao, S.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Sys.Dyn. 24(3), 133–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schiehlen, W.: Multibody System Handbook. Spring (1990)

  18. Shabana, A.A.: Dynamics of Multibody System. Cambridge University Press (2005)

  19. Xie, L.M., Chen, L.: Roust control and vibration suppression of free-floating flexible space robot. J. Theor. App. Mech-Pol. 44(6), 1057–1065 (2012)

  20. Xie, L.M., Chen, L.: Singular perturbation robust control of a free-floating flexible-joint space robot. J. of Vib. Meas. Diag. 33(4), 597–601 (2013) (in Chinese)

  21. Wang, C.Q.: Dynamic control of a free-floating flexible dual-arm space robotic system. China J. Mech. Eng. 43(10), 196–200 (2007)

  22. Huang, L., Ge, S.S., Lee, T.H.: Position/force control of uncertain constrained flexible joint robots. Mechatronics. 16(2), 111–120 (2006)

    Article  Google Scholar 

  23. Ghorbel, F., Hung, J.Y., Spong, M.W.: Adaptive control of flexible-joint manipulators. Control Syst. Mag. IEEE. 13(1), 15–21 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Y.C., Liu, Y.W., Liu, H.: Singular perturbation control for flexible-joint manipulator. Electr. Mach. Contrl. 13(3), 436–441 (2009)

  25. Chen, L.: Study on dynamics modeling and singular perturbation control of free-floating space robot with flexible joints. China Mech. Eng. 22(18), 2151–2155 (2011) (in Chinese)

  26. Kokotovic, P.V.: Applications of singular perturbation technique to control problems. SIAM Rev. 26(4), 501–550 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, D.F., Li, J., Wang, W.H., Yang, G.: A combination control to suppress flexible vibration of complex spacecraft. In: International Conference on Mechatronics & Control, China (2014)

  28. Wang, L., Book, W.J., Huggins, J.D.: Application of aingular perturbation theory to hydraulic pump controlled systems. IEEE/ASME Trans. Mechatron. 17(2), 251–259 (2012)

    Article  Google Scholar 

  29. Khosravi, M.A., Taghirad, H.D.: Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Trans. Robot. 30(3), 694–704 (2014)

    Article  Google Scholar 

  30. Kuo, K.Y., Lin, J.: Fuzzy logic control for flexible link robot arm by singular perturbation approach. Appl. Soft Comput. 2(1), 24–38 (2002)

    Article  Google Scholar 

  31. Karimzadeh, A., Vossoughi, G.R.: Impedance control of a two link flexible manipulator based on singular perturbation and sliding mode control theory. In: ASME 7th biennial conference on engineering systems design and analysis, UK (2004)

  32. Moosavian, A.A.S., Papadopoulos, E.: Free-flying robots in space: an overview of dynamics modeling, Planning and control. Robotica. 25(5), 537–547 (2007)

    Article  Google Scholar 

  33. Liu, X.F., Li, H.Q., Chen, Y.J., Cai, G.P.: Dynamics and control of space robot considering joint friction. Acta Astronaut. 111, 1–18 (2015)

    Article  Google Scholar 

  34. Li, H.Q., Liu, X.F., Duan, L.C., CAI, G.P.: Deployment and control of spacecraft solar array considering joint stick-slip friction. Aerosp. Sci. Technol. 42, 342–352 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China [grant numbers 11272202 and 11472171] and the Natural Science Foundation of Shanghai [grant numbers 14ZR1421000 and 16ZR1436200].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Cai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZW., Gao, MZ. & Cai, GP. Active Control of a 6-DOF Space Robot with Flexible Panels Using Singular Perturbation Method. J of Astronaut Sci 66, 83–99 (2019). https://doi.org/10.1007/s40295-019-00166-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00166-3

Keywords

Navigation