Skip to main content
Log in

A Multi-Blade Model for Heliogyro Solar Sail Structural Dynamic Analysis

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

An analytical model is derived to study the structural dynamic stability behavior for the free-flying heliogyro solar sail consisting of a finite set of symmetric or evenly distributed thin blades on a flat surface. Key properties of the flutter instability are described in terms of the relationship among the eigenvalues and eigenvectors associated with a flutter instability frequency. Various simulation cases for an idealized single blade, fixed rotational speed heliogyro model, and a generalized multi-bladed, freely spinning heliogyro model are presented to show how the flutter instability frequencies change as a function of the solar radiation pressure and the size of the dynamic model. Convergence of the flutter instability frequency versus the system order is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c :

Blade width

E :

Youngs modulus

ekx,ekη,ekζ :

Orthogonal unit vectors of the k th blade frame

eIx,eIy,eIz :

Orthogonal unit vectors of the inertia frame

ehx,ehy,ehz :

Orthogonal unit vectors of the hub frame

G :

Torsional rigidity; GE/[2(1+)ν]

Ixx,Iyy,Izz :

Hub moment of inertia

\(\bar {I}_{xx},\bar {I}_{yy},\bar {I}_{zz}\) :

\(\bar {I}_{xx}=I_{xx}/m_{b}\ell ^{2},\bar {I}_{yy}=I_{yy}/m_{b}\ell ^{2},\bar {I}_{zz}=I_{zz}/m_{b}\ell ^{2}\)

i,j,k :

Integers for indexing mode shapes

:

Blade length

m,mb :

Blade density per unit length (kg/m), total mass of a blade (mb = m for a constant m)

\(m_{h},\bar {m}_{h}\) :

Hub mass (kg), \(\bar {m}_{h}=m_{h}/m_{b}\)

p 0 :

Solar radiation pressure; N/m2

\(\overline {p}\) :

Non-dimensional p0; \(\overline {p}=(p_{0} c)/(m_{b} {\Omega }_{0}^{2})\)

Rx,Ry,Rz :

Translational displacements of the hub frame

\(\overline {R}_{x}, \overline {R}_{y}, \overline {R}_{z}\) :

\(\overline {R}_{x}=R_{x}/\ell , \overline {R}_{y}=R_{y}/\ell , \overline {R}_{z}=R_{z}/\ell \)

vk,wk,uk,ϕk :

In-plane, out-of-plane, elongation elastic displacements, and twist angle of the k th blade

\(\overline {u}_{k}, \overline {v}_{k}, \overline {w}_{k}\) :

\(\overline {u}_{k}=u_{k}/\ell , \overline {v}_{k}=v_{k}/\ell , \overline {w}_{k}=w_{k}/\ell \)

\({u}_{k}^{\prime }, {v}_{k}^{\prime }, {w}_{k}^{\prime }\) :

\({u}_{k}^{\prime } = \partial u_{k}/\partial x, {v}_{k}^{\prime } = \partial v_{k}/\partial x, {w}_{k}^{\prime } = \partial w_{k}/ \partial x\)

x,y,z :

Hub coordinates along the principal axes

xk,ξk,ηk :

Blade coordinates of the k th blade

𝜗x,𝜗y,𝜗z :

Rotational angles of the hub frame

Ω0 :

Nominal spin rate of heliogyro, rad/sec

\(\varphi _{u_{k}i}, \varphi _{v_{k}i}, \varphi _{w_{K}i},\varphi _{\phi _{k} i}\) :

i th mode shape for elastic displacements of the k th blade

ν :

Poison ratio

ρ :

Density per unit volume for blades; kg/m3

References

  1. MacNeal, R.H.: The heliogyro: an interplanetary flying machine, NASA contractor report CR 84460 (1967)

  2. MacNeal, R.H., Hedgepeth, J.: Helicopters for interplanetary space flight. In: 34th National Forum of the American Helicopter Society, Washington, D.C. (1978)

  3. Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818 (1974)

  4. Juang, J.-N., Warren, J.E., Horta, L.G., Wilkie, W.K.: Progress in NASA heliogyro solar sail structural dynamics and solarelastic stability research. In: The 4th International Symposium on Solar Sailing, 17Th-20Th January, Kyoto Research Park, Kyoto, Japan (2017)

  5. Wilkie, W.K., Warren, J.E., Horta, L.G., Lyle, K.H., Juang, J.-N., Gibbs, S.C., Dowell, E.H., Guerrant, D.V., Lawrence, D.A.: Recent Advances in heliogyro solar sail structural dynamics, stability, and control research, AIAA SciTech 2015, Kissimee, Florida, January, 2015 (2015)

  6. Wilkie, W.K., Warren, J.E., Horta, L.G., Juang, J.-N., Gibbs, S.C., Dowell, E.H., Guerrant, D.V., Lawrence, D.A.: Recent progress in heliogyro solar sail structural dynamics. Presented at the European Conference on Spacecraft Structures, Materials, and Environmental Testing, Braunschweig, Germany, April 1–4, 2014 (2014)

  7. Wilkie, W.K., Warren, J.E., Juang, J.-N., Horta, L.G., Lyle, K.H., Littell, J.D., Bryant, R.G., Thomson, M. W., Walkemeyer, P. E., Guerrant, D. V., Lawrence, D. A., Gibbs, S. C., Dowell, E. H., Heaton, A. F.: Heliogyro Solar Sail Research at NASA. In: Macdonald, M (ed.) Advances in Solar Sailing, pp 631–650. Springer-Praxis, Berlin (2014)

  8. Juang, J.-N., Hung, C.-H., Wilkie, W. K.: Dynamics of a spinning membrane, The Journal of the Astronautical Sciences, published online: 30 October 2015, vol. 60, No. 3-4, pp. 494–516; Special Issue: the Jer-Nan Juang Astrodynamics Symposium (2013). https://doi.org/10.1007/s40295-015-0062-0

  9. Gibbs, S.C., Dowell, E.H.: Solarelastic stability of the heliogyro. In: Macdonald, M (ed.) Advances in Solar Sailing, pp 661–665. Springer-Praxis, Berlin (2014)

  10. Dowell, E.H.: Can solar sails flutter. AIAA J. 49, 1305–1307 (2011)

    Article  Google Scholar 

  11. Meirovitch, L., Juang, J.-N.: Dynamics of a gravity-gradient stabilized flexible spacecraft, NASA contrator report for research grant NGR 47-004-098, NASA CR-2456 (1974)

  12. Meirovitch, L., Juang, J.: On the natural modes of oscillation of rotating flexible structure about nontrivial equilibrium. J. Spacecr. Rocket. 13, 33–44 (1976)

    Article  Google Scholar 

  13. Meirovitch, L., Juang, J.-N.: Effect of the mass center shift for force-free flexible spacecraft. AIAA J. 13, 1535–1536 (1975)

    Article  Google Scholar 

  14. Meirovitch, L.: Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates. J. Guid. Dyn. Control 14, 1008–1013 (1991)

    Article  Google Scholar 

  15. Lee, S., Junkins, J.L.: Explicit generalization of lagrange’s equations for hybrid coordinate dynamical systems. J. Guid. Dyn. Control 15(6), 1443–1452 (1992)

    Article  MathSciNet  Google Scholar 

  16. Junkins, J.L., Kim, Y.: Introduction to dynamics and control of flexible structures, American institute of aeronautics and astronautics, Washington, DC, pp. 452 (1993)

  17. Natori, M., Nemat-Nasser, S., Mitsugi, J.: Instability of a rotating blade subjected to solar radiation pressure. In: AIAA 30th Structures, Structural Dynamics and Materials Conference, p 1989 (1989)

  18. Natori, M., Nenat-Nasser, S.: Application of a mixed variational approach to aeroelastic stability analysis of a nonuniform blade. J. Struct. Mech. l4, 5–31 (1986)

    Article  Google Scholar 

  19. Gibbs, S.C., Dowell, E.H.: Membrane paradox for solar sails. AIAA J. 52, 2904–2906 (2014)

    Article  Google Scholar 

  20. Dowell, E.: On asymptotic approximations to beam mode shapes. J. Appl. Mech. 5(12), 439 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part under contract (Sub-award Number C17-2B53-JJ) from the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jer-Nan Juang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Order of Variables

The equations of motion for the heliogyro system with multiple blades are expected to be highly nonlinear. It is necessary to neglect higher-order terms for stability analysis. The following is a list of non-dimensional variables of order [3] for use in deriving blade strain energy and system kinetic energy to generate the dynamic equations using Hamilton’s principle. This list is applicable for any number of blades with equal length and so no subscript such as k for any designated blade is shown.

$$ \begin{array}{lll} {\frac{\zeta }{\ell } = {\mathrm{O}}\left( \varepsilon \right);}&{\frac{\eta }{\ell } = {\mathrm{O}}\left( \varepsilon \right);}&{\xi = \frac{x}{\ell } = {\mathrm{O}}\left( 1 \right)}\\ {\bar{v} = \frac{v}{\ell } = {\mathrm{O}}\left( \varepsilon \right);}&{v^{\prime} = \frac{{\partial \left( v\left/ \ell \right. \right)}}{{\partial \left( x\left/\right. \ell \right)}} = \bar{v}^{\prime} = {\mathrm{O}}\left( \varepsilon \right);}&{v^{\prime\prime} = \frac{1}{\ell }\frac{{{\partial^{2}}\left( v\left/ \right. \ell\right)}}{{\partial \left( x^{2}\left/\right. \ell^{2}\right)}} = \frac{1}{\ell }\bar{v}^{\prime\prime} = {\mathrm{O}}\left( {{\varepsilon^{2}}} \right)}\\ {\bar{w} = \frac{w}{\ell } = {\mathrm{O}}\left( \varepsilon \right);}&{w^{\prime} = \frac{{\partial \left( w \left/\right.\ell\right)}}{{\partial \left( x\left/ \right. \ell\right)}} = \bar{w}^{\prime} = {\mathrm{O}}\left( \varepsilon \right);}&{w^{\prime\prime} = \frac{1}{\ell }\frac{{{\partial^{2}}\left( w \left/ \right. L\right)}}{{\partial \left( x^{2}\left/ \right. L^{2}\right)}} \!= \frac{1}{\ell }\bar{w}^{\prime\prime} =\! {\mathrm{O}}\left( {{\varepsilon^{2}}} \right)}\\ {\phi = {\mathrm{O}}\left( \varepsilon \right);}&{\phi^{\prime} = \frac{1}{\ell }\frac{{\partial \phi }}{{\partial \left( x\left/ \right. \ell\right)}} = \frac{1}{\ell }\bar{\phi}^{\prime} = {\mathrm{O}}\left( {{\varepsilon^{2}}} \right);}&{} \end{array} $$

Appendix B: Definitions of Sectional Integrals

Assume that all blades have identical material properties and configuration. The sectional integrals are shown in the following [3].

$$ \begin{array}{@{}rcl@{}} &&\int {{\int}_{A} {\rho d\eta d\zeta } } = m = \rho A\ ({\text{for \ constant }}\ \rho\ {\text{ and }}\ A)\\ &&\int {{\int}_{A} {\rho \eta d\eta d\zeta } } = 0;\int {{\int}_{A} {\rho \zeta d\eta d\zeta } } = 0\\ &&\int {{\int}_{A} {\rho {\eta^{2}}d\eta d\zeta } } = mk_{m2}^{2};\int {{\int}_{A} {\rho {\zeta^{2}}d\eta d\zeta } } = mk_{m1}^{2} \\ &&\int {{\int}_{A} {\rho \left[ {\eta - \zeta } \right]\left[ {\eta + \zeta } \right]d\eta d\zeta } } = m\left( {k_{m2}^{2} - k_{m1}^{2}} \right) = m{\Delta} {k_{m}^{2}}\\ &&\int {{\int}_{A} {\rho \left( {{\eta^{2}} + {\zeta^{2}}} \right)d\eta d\zeta } } = m\left( {k_{m2}^{2} + k_{m1}^{2}} \right) = m{k_{m}^{2}}\\ &&{I_{v}} = \int {{\int}_{A} {{\eta^{2}}d\eta d\zeta } } ;{I_{w}} = = \int {{\int}_{A} {{\zeta^{2}}d\eta d\zeta } } ;A{k_{a}^{2}} = \int {{\int}_{A} {\left( {{\eta^{2}} + {\zeta^{2}}} \right)d\eta d\zeta } } \\ &&A = \int {{\int}_{A} {d\eta d\zeta } } ;\int {{\int}_{A} {\zeta d\eta d\zeta = 0} } ;\int {{\int}_{A} {\eta \zeta d\eta d\zeta } } = 0;J \approx 4{I_{w}} \end{array} $$

Appendix C: Definition of Non-Dimensional Parameters

It is a common practice to use non-dimensional parameters to develop equations of motion [3]. Dimensionless analysis is often used to generalize the problem, because solution of dimensional form is the solution of a particular problem. Non-dimensional equations will reduce the number of variables and provide insight into the controlling parameters. Non-dimensional parameters used in the paper are given as follows.

$$ \begin{array}{@{}rcl@{}} &&\xi = \frac{x}{\ell };{{\dot {\bar{\vartheta}} }_{x}} = \frac{{{{\dot \vartheta }_{x}}}}{{{{\Omega}_{0}}}};{{\ddot {\bar{\vartheta}} }_{x}} = \frac{{{{\ddot \vartheta }_{x}}}}{{{{\Omega}_{0}^{2}}}};{{\dot {\bar{\vartheta}} }_{y}} = \frac{{{{\dot \vartheta }_{y}}}}{{{{\Omega}_{0}}}};{{\dot {\bar{\vartheta}} }_{y}} = \frac{{{{\ddot \vartheta }_{y}}}}{{{{\Omega}_{0}^{2}}}};{{\dot {\bar{\vartheta}} }_{z}} = \frac{{{{\dot \vartheta }_{z}}}}{{{{\Omega}_{0}}}};{{\ddot {\bar{\vartheta}} }_{z}} = \frac{{{{\ddot \vartheta }_{z}}}}{{{{\Omega}_{0}^{2}}}} \\ &&\bar{T} = \frac{T}{{m{{\Omega}_{0}^{2}}{\ell^{2}}}};\bar{G}\bar{J} = \frac{{GJ}}{{m{{\Omega}_{0}^{2}}{\ell^{4}}}};\bar{E}{{\bar{I}}_{w}} = \frac{{E{I_{w}}}}{{m{{\Omega}_{0}^{2}}{\ell^{4}}}}; \bar{E}{{\bar{I}}_{v}} = \frac{{E{I_{2}}}}{{m{{\Omega}_{0}^{2}}{\ell^{4}}}};{\Delta} \bar{E}\bar{I} = \bar{E}{{\bar{I}}_{v}} - \bar{E}{{\bar{I}}_{w}} \\ &&\bar{u} = \frac{u}{\ell },\bar{v} = \frac{v}{\ell },\bar{w} = \frac{w}{\ell }: \tau = {{\Omega}_{0}}t \Rightarrow \frac{{\partial \left( {} \right)}}{{\partial t}} = \frac{{{{\Omega}_{0}}\partial \left( {} \right)}}{{\partial \tau}};\frac{{\partial \phi }}{{\partial \xi }} = \frac{{\partial \phi }}{{\partial \left( x \left/ \right. \ell\right)}} = \frac{{\ell \partial \phi }}{{\partial x}} \\ &&\bar{v}^{\prime} = \frac{{\partial \bar{v}}}{{\partial \xi }} = \frac{{\partial \left( v\left/ \right.\ell\right)}}{{\partial \left( x\left/ \right. \ell\right)}} = v^{\prime};\bar{v}^{\prime\prime} = \frac{{{\partial^{2}}\left( v\left/ \right. \ell\right)}}{{\partial \left( x^{2} \left/ \right. \ell^{2} \right)}} = \ell v^{\prime\prime}; \ddot{ \bar{v}}^{\prime} = \frac{{{d^{2}}}}{{{{\Omega}_{0}^{2}}d{t^{2}}}}\frac{{\partial \left( v \left/ \right. \ell\right)}}{{\partial \left( x \left/ \right. \ell \right)}} = \frac{1}{{{{\Omega}_{0}^{2}}}}\ddot v^{\prime} \\ &&{{\bar{T}}^{\prime}} = \frac{{\partial {{\bar{T}}}}}{{\partial \xi }} = \frac{{\partial {{\bar{T}}}}}{{\partial \left( x \left/ \right. \ell\right)}} = \frac{1}{{m{{\Omega}_{0}^{2}}\ell }}\frac{{\partial {T}}}{{\partial x}}; \frac{{d\bar{v}}}{{d\tau}} = \frac{{d\left( v\left/ \right. \ell\right)}}{{d{{\Omega}_{0}}t}} = \frac{1}{{\ell {{\Omega}_{0}}}}\frac{{dv}}{{dt}} \Rightarrow \frac{{{{\Omega}_{0}}\dot v}}{{{\ell^{2}}{{\Omega}_{0}^{2}}}} = \frac{{\ell {{\Omega}_{0}^{2}}\dot {\bar{v}}}}{{{\ell^{2}}{{\Omega}_{0}^{2}}}} \Rightarrow \frac{{\dot {\bar{v}}}}{\ell } \\ &&{{\bar{k}}_{m}} = \frac{{{k_{m}}}}{\ell },{{\bar{k}}_{{m_{1}}}} = \frac{{{k_{{m_{1}}}}}}{\ell },{{\bar{k}}_{{m_{2}}}} = \frac{{{k_{{m_{2}}}}}}{\ell } \end{array} $$

Appendix D: Equations of Motion from Kinetic and Strain Energies

The kinetic energy for the k th blade can be calculated by

$$ {{\mathcal{T}}_{k}} = \frac{1}{2}{\int}_{0}^{{\ell_{k}}} {\int {{\int}_{A} {{\rho_{k}}{{\dot{\textbf{r}}}_{k}} \cdot {{\dot{\textbf{r}}}_{k}} d{\zeta_{k}}d{\eta_{k}}d{x_{k}}} } } $$
(D1)

where the position r is defined in Eq. 2. The ratio Hkx/ << 1 is very small, i.e., the distance from the center of hub to the root of the k blade is negligible compared to the blade length. Taking variation of the kinetic energy and integrating from t0 to tf yield

$$ {\int}_{{t_{0}}}^{{t_{f}}} {\delta {T_{k}}dt} = {\int}_{{t_{0}}}^{{t_{f}}} {{\int}_{0}^{{\ell_{k}}} {\int {{\int}_{A} {{\rho_{k}}{{\dot{\textbf{r}}}_{k}} \cdot \delta {{\dot{\textbf{r}}}_{k}} d{\zeta_{k}}d{\eta_{k}}} } } d{x_{k}}dt} $$
(D2)

Using the non-dimensional parameters defined in Appendix C, the non-dimensional variation of kinetic energy for the k th blade is

$$ {\int}_{\tau_{0}}^{\tau} \delta\bar{{\mathcal{T}}}_{k} d\tau = - {\int}_{\tau_{0}}^{\tau} \left[ \delta q^{T} {{\int}_{0}^{1}}\left( \hat M_{k} \ddot q + \hat C_{k} \dot q + \hat K_{k} q \right)d\xi_{k} - \sum\limits_{i=1}^{n}{{\int}_{0}^{1}} \varphi_{u_{k}i} \xi_{k} d\xi_{k} \delta q_{u_{i}k} \right] d\tau $$
(D3)

where the generalized coordinate vector is

$$ q = {\left[ {\begin{array}{cccccccccc} {{\bar{R}_{x}}}&{{\bar{R}_{y}}}&{{\bar{R}_{z}}}&{{\bar{\vartheta}_{x}}}&{{\bar{\vartheta}_{y}}}&{{\bar{\vartheta}_{z}}}&{{q_{w_{k} i}}}&{{q_{v_{k} i}}}&{{q_{\phi_{k} i}}}&{{q_{u_{k}i}}} \end{array}} \right]^{T}} $$

and the shape functions are defined in Eq. 4, i.e., \(\varphi _{w_{k}i}\), \(\varphi _{v_{k}i}\), \(\varphi _{u_{\phi } i}\), for i = 1, 2,…,n. The mass matrix \(\hat {M}_{k}\), the gyroscopic \(\hat {C}_{k}\), and the stiffness matrix \(\hat {K}_{k}\) due to the spinning Ω0 are given as follows.

Mass Matrix from Variation of Kinetic Energy

The mass matrix for the k th blade from the variation of kinetic energy is

$$ \bar{M}_{k} = {{\int}_{0}^{1}} {\hat M_{k} d\xi_{k} ;} \ \ \ \ \ \hat M_{k} = \left[ {\begin{array}{cc} {{{\hat M}_{k_{RR}}}}&{{{\hat M}_{k_{RB}}}}\\*[5pt] {\hat M_{k_{RB}}^{T}}&{{{\hat M}_{k_{BB}}}} \end{array}} \right] $$
(D4)

where the 6 × 6 submatrix \(\hat M_{k_{RR}}\) gives the coupling between the hub translational and rotational coordinates,

$$ {\hat M_{k_{RR}}} = \left( {\begin{array}{cccccc} 1&0&0&0&0&{\xi_{k} s{\theta_{k}}}\\ 0&1&0&0&0&{\xi_{k} c{\theta_{k}}}\\ 0&0&1&{ - \xi_{k} s{\theta_{k}}}&{ - \xi_{k} c{\theta_{k}}}&0\\ 0&0&{ - \xi_{k} s{\theta_{k}}}&{\bar{k}_{m1}^{2} + \bar{k}_{m2}^{2}{c^{2}}{\theta_{k}} + {{\xi_{k}^{2}}}{{\mathrm{s}}^{2}}{\theta_{k}}}&{\left( {{{\xi_{k}^{2}}} - \bar{k}_{m2}^{2}} \right)c{\theta_{k}}s{\theta_{k}}}&0\\ 0&0&{ - \xi_{k} c{\theta_{k}}}&{\left( {{{\xi_{k}^{2}}} - \bar{k}_{m2}^{2}} \right)c{\theta_{k}}s{\theta_{k}}}&\begin{array}{l} \bar{k}_{m1}^{2} + {{\xi_{k}^{2}}}{c^{2}}{\theta_{k}}\\ + \bar{k}_{m2}^{2}{s^{2}}{\theta_{k}} \end{array}&0\\ {\xi_{k} s{\theta_{k}}}&{\xi_{k} c{\theta_{k}}}&0&0&0&{\bar{k}_{m2}^{2} + {{\xi_{k}^{2}}}} \end{array}} \right) $$
(D5)

the 6 × 4n rectangular matrix \(\hat M_{k_{RB}}\) shows the coupling of the translational and rotational coordinates with the blade vibrational generalized coordinates,

$$ {\hat M_{k_{RB}}} = \left( {\begin{array}{cccc} 0&{{\varphi_{v_{k}j}}s{\theta_{k}}}&0&{{\varphi_{u_{k}j}}c{\theta_{k}}}\\ 0&{{\varphi_{v_{k}j}}c{\theta_{k}}}&0&{ - {\varphi_{u_{k}j}}s{\theta_{k}}}\\ {{\varphi_{w_{k}j}}}&0&0&0\\ { - s{\theta_{k}}\left( {\varphi {^{\prime}_{w_{k}j}}\bar{k}_{m1}^{2} + \xi {\varphi_{w_{k}j}}} \right)}&0&{{\bar{k}_{m}^{2}}{\varphi_{\phi_{k} j}}c{\theta_{k}}}&0\\ { - c{\theta_{k}}\left( {\varphi {^{\prime}_{w_{k}j}}\bar{k}_{m1}^{2} + \xi {\varphi_{w_{k}j}}} \right)}&0&{ - {\bar{k}_{m}^{2}}{\varphi_{\phi_{k} j}}s{\theta_{k}}}&0\\ 0&{\left( {\varphi {^{\prime}_{v_{k}j}}\bar{k}_{m2}^{2} + \xi {\varphi_{v_{k}j}}} \right)}&0&0 \end{array}} \right) $$
(D6)

and the 4n × 4n matrix \(\hat M_{k_{BB}}\) is associated with the blade vibrational generalized coordinates

$$ {\hat M_{k_{BB}}} = \left( \! {\begin{array}{*{20}{c}} {{\varphi_{w_{k}i}}{\varphi_{w_{k}j}} + \bar{k}_{m1}^{2}\varphi {^{\prime}_{w_{k}i}}\varphi {^{\prime}_{w_{k}j}}}&0&0&0\\ 0&{{\varphi_{v_{k}i}}{\varphi_{v_{k}j}} + \bar{k}_{m2}^{2}\varphi {^{\prime}_{v_{k}i}}\varphi {^{\prime}_{v_{k}j}}}&0&0\\ 0&0&{{\bar{k}_{m}^{2}}{\varphi_{\phi_{k} i}}{\varphi_{\phi_{k} j}}}&0\\ 0&0&0&{{\varphi_{u_{k}i}}{\varphi_{u_{k}j}}} \end{array}} \right) $$
(D7)

with i,j = 1,2,…,n and

$$ s{\theta_{k}} = \sin {\theta_{k}};c{\theta_{k}} = \cos {\theta_{k}} $$

Note that the mass matrix is symmetric such that \(\bar {M}_{k} =\bar {M_{k}^{T}}\) and positive definite \(\bar {M}_{k}>0\).

Gyroscopic Matrix from Variation of Kinetic Energy

The gyroscopic matrix for the k th blade from the variation of kinetic energy is

$$ \bar{C}_{k} = {{\int}_{0}^{1}} {\hat Cd\xi } ;\ \ \ \ \hat C_{k} = \left[ {\begin{array}{cc} {{{\hat C}_{k_{RR}}}}&{{{\hat C}_{k_{RB}}}}\\ { - \hat C_{k_{RB}}^{T}}&{{{\hat C}_{k_{BB}}}} \end{array}} \right] $$
(D8)

where the 6 × 6 matrix \(\hat C_{k_{RR}}\) is a skew symmetric matrix,

$$ {\hat C_{k_{RR}}} = \left( {\begin{array}{cccccc} 0&0&0&0&0&{ - \xi_{k} c\theta_{k} }\\ 0&0&0&0&0&{\xi_{k} s\theta_{k} }\\ 0&0&0&0&0&0\\ 0&0&0&0&{ - 2\bar{k}_{m1}^{2}}&0\\ 0&0&0&{2\bar{k}_{m1}^{2}}&0&0\\ {\xi_{k} c\theta_{k} }&{ - \xi_{k} s\theta_{k} }&0&0&0&0 \end{array}} \right) $$
(D9)

and the 6 × 4n rectangular matrix \(\hat C_{k_{RB}}\) is

$$ {\hat C_{k_{RB}}} = \left( {\begin{array}{cccc} 0&{ - {\varphi_{v_{k}j}}c\theta_{k} }&0&{{\varphi_{u_{k}j}}s\theta_{k} }\\ 0&{{\varphi_{v_{k}j}}s\theta_{k} }&0&{{\varphi_{u_{k}j}}c\theta_{k} }\\ 0&0&0&0\\ {2\bar{k}_{m1}^{2}{{\varphi }^{\prime}_{w_{k}j}}c\theta_{k} }&0&{2\bar{k}_{m1}^{2}{\varphi_{\phi_{k} j}}s\theta_{k} }&0\\ { - 2\bar{k}_{m1}^{2}{{\varphi }^{\prime}_{w_{k}j}}s\theta_{k} }&0&{2\bar{k}_{m1}^{2}{\varphi_{\phi_{k} j}}c\theta_{k} }&0\\ 0&0&0&{2{\varphi_{u_{k}j}}\xi_{k} } \end{array}} \right) $$
(D10)

and the 4n × 4n matrix \(\hat C_{k_{BB}}=-\hat C^{T}_{k_{BB}}\) is

$$ {\hat C_{k_{BB}}} = \left( {\begin{array}{*{20}{c}} 0&0&{ - 2\bar{k}_{m1}^{2}{\varphi_{\phi_{k} j}}{{\varphi }^{\prime}_{w_{k}i}}}&0\\ 0&0&0&{2{\varphi_{u_{k}j}}{\varphi_{v_{k}i}}}\\ {2\bar{k}_{m1}^{2}{\varphi_{\phi_{k} i}}{{\varphi }^{\prime}_{w_{k}j}}}&0&0&0\\ 0&{ - 2{\varphi_{u_{k}i}}{\varphi_{v_{k}j}}}&0&0 \end{array}} \right) $$
(D11)

Note that the gyroscopic matrix is skew symmetric such that \(\bar {C}_{k} = - {\bar {C}}_{k}^{T}\).

Stiffness Matrix from Variation of Kinetic Energy for a Spinning System

The stiffness matrix for the k th blade subject to a nominal spinning rate Ω0 is

$$ {\bar{K}_{k}} = {{\int}_{0}^{1}} {{\hat K_{k}}d\xi ;} \ \ \ \ {\Delta} \bar{k_{m}^{2}} = \bar{k}_{m2}^{2} - \bar{k}_{m1}^{2};\ \ \ \ \hat K_{k} = \left[ {\begin{array}{cc} {{\hat K_{k_{RR}}}}&{{\hat K_{k_{RB}}}}\\*[5pt] \hat{K}_{k_{RB}}^{T}&{{\hat K_{k_{BB}}}} \end{array}} \right] $$
(D12)

where the 6 × 6 matrix \(\hat K_{k_{RR}}\) is symmetric,

$$ {\hat{K}_{k_{RR}}}= \left( {\begin{array}{cccccc} 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&{\bar{k}_{m2}^{2}{c^{2}}\theta_{k} - \bar{k}_{m1}^{2} + {{\xi_{k}^{2}}}{s^{2}}\theta_{k} }&{\left( {{{\xi_{k}^{2}}} - \bar{k}_{m2}^{2}} \right)c\theta_{k} s\theta_{k} }&0\\ 0&0&0&{\left( {{{\xi_{k}^{2}}} - \bar{k}_{m2}^{2}} \right)c\theta_{k} s\theta_{k} }&{{{\xi_{k}^{2}}}{c^{2}}\theta_{k} - \bar{k}_{m1}^{2} + \bar{k}_{m2}^{2}{s^{2}}\theta_{k} }&0\\ 0&0&0&0&0&0 \end{array}} \right) $$
(D13)

and the 6 × 4n rectangular matrix \(\hat K_{k_{RB}}\) is

$$ {\hat{ K}_{k_{RB}}} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ {\left( {\bar{k}_{m1}^{2}\varphi {^{\prime}_{w_{k}j}} - \xi {\varphi_{w_{k}j}}} \right)s\theta_{k} }&0&{{\varphi_{\phi_{k} j}}{\Delta} {\bar{k}_{m}^{2}}c\theta_{k} }&0\\ {\left( {\bar{k}_{m1}^{2}\varphi {^{\prime}_{wj}} - \xi {\varphi_{wj}}} \right)c\theta_{k} }&0&{ - {\varphi_{\phi j}}{\Delta} {\bar{k}_{m}^{2}}s\theta_{k} }&0\\ 0&0&0&0 \end{array}} \right) $$
(D14)

and the 4n × 4n matrix \(\hat K_{BB}=\hat K^{T}_{k_{BB}}\) is

$$ {\hat {K}_{k_{BB}}} = \left( {\begin{array}{*{20}{c}} { - \bar{k}_{m1}^{2}{{\varphi}^{\prime}_{wi}}{{\varphi}^{\prime}_{wj}}}&0&0&0\\ 0&{\left( { - {\varphi_{vi}}{\varphi_{vj}} - \bar{k}_{m2}^{2}\varphi {^{\prime}_{vi}}\varphi {^{\prime}_{vj}}} \right)}&0&0\\ 0&0&{{\varphi_{\phi i}}{\varphi_{\phi j}}{\Delta} {\bar{k}_{m}^{2}}}&0\\ 0&0&0&{ - {\varphi_{ui}}{\varphi_{uj}}} \end{array}} \right) $$
(D15)

Note that the stiffness matrix from the variation of kinetic energy is symmetric, i.e., \(\bar {K}_{k} =\bar {K}_{k}^{T}\) but may not be positive definite.

There is a single variation term shown in Eq. D3 associated with the blade elongation displacement, i.e.,

$$ -{{\int}_{0}^{1}}\varphi_{u_{k}i} \xi_{k} \delta q_{u_{i}k} d\xi_{k} $$
(D16)

This term results from the product of ξk and \(\bar {u}_{k}\). It is an important term for solving the centrifugal force to be discussed later.

Stiffness Matrix from Variation of Strain Energy

The first variation of the strain energy for a blade in terms of engineering stresses and strains is

$$ \delta {\mathcal{V}} = \frac{1}{2}{\int}_{0}^{\ell} {\int {{\int}_{A} {\left( {{\sigma_{xx}}\delta {\varepsilon_{xx}} + {\sigma_{x\eta }}\delta {\varepsilon_{x\eta }} + {\sigma_{x\zeta }}\delta {\varepsilon_{x\zeta }}} \right)d\eta d\zeta dx} } } $$
(D17)

where

$$ \begin{array}{@{}rcl@{}} {\sigma_{xx}} &=& E{\varepsilon_{xx}} = E\left[ \begin{array}{c} \frac{{{{v^{\prime}}^{2}}}}{2} + \frac{{{{w^{\prime}}^{2}}}}{2} + u^{\prime} + \frac{{{{\phi^{\prime}}^{2}}}}{2}\left( {\eta_{}^{2} + \zeta_{}^{2}} \right)\\ - \left( {v^{\prime\prime} - w^{\prime} \phi^{\prime} } \right)(\eta \cos \phi - \zeta \sin \phi ) - \left( {w^{\prime\prime} + v^{\prime}\phi^{\prime} } \right)(\zeta \cos \phi + \eta \sin \phi ) \end{array} \right]\\ {\sigma_{x\eta }} &=& G{\varepsilon_{x\eta }}\\ {\sigma_{x\zeta }} &=& G{\varepsilon_{x\zeta }} \end{array} $$
(D18)

and

$$ \begin{array}{@{}rcl@{}} \delta {\varepsilon_{xx}} & = & \delta u^{\prime} + v^{\prime}\delta v^{\prime} + w^{\prime}\delta w^{\prime} + \left( {\eta_{}^{2} + \zeta_{}^{2}} \right)\phi^{\prime}\delta \phi^{\prime} \!- \left[ {\eta \cos \phi - \zeta \sin \phi } \right]\left( {\delta v^{\prime\prime} + w^{\prime\prime}\delta \phi } \right)\\ && - \left[ {\eta \sin \phi + \zeta \cos \phi } \right]\left( {\delta w^{\prime\prime} + v^{\prime\prime}\delta \phi } \right)\\ \delta {\varepsilon_{x\eta }} & = & - \zeta \delta \phi^{\prime} \\ \delta {\varepsilon_{x\zeta }} & = & \eta \delta \phi^{\prime} \end{array} $$
(D19)

where the terms wϕ and vϕ are one order in magnitude smaller than the other terms in their respective parentheses and thus ignored in the following derivation. Nevertheless, it is still debatable that these ignored terms may have some non-negligible contributions to the stiffness matrix.

Define the quantity for the k th blade

$$ {T_{k}} = EA\left( {\frac{{{v^{\prime}}_{k}^{2}}}{2} + \frac{{{w^{\prime}}_{k}^{2}}}{2} + {{u^{\prime}}_{k}} + {k_{A}^{2}}\frac{{{\phi^{\prime}}_{k}^{2}}}{2}} \right) \approx EA\left( {\frac{{{v^{\prime}}_{k}^{2}}}{2} + \frac{{{w^{\prime}}_{k}^{2}}}{2} + {{u^{\prime}}_{k}}} \right) $$
(D20)

which is related to the centrifugal force for a spinning blade. The non-dimensional variation of the strain energy becomes

$$ \begin{array}{@{}rcl@{}} \delta \bar{\mathcal{V}} & = & \sum\limits_{k = 1}^{{n_{b}}} {{{\int}_{0}^{1}} {\left\{ {\left[ {\bar{E}{{\bar{I}}_{w}}{{\bar{w}}^{\prime\prime}_{k}} + {\Delta} \bar{E}\bar{I}{\phi_{k}}{{\bar{v}}^{\prime\prime}_{k}}} \right]\delta {{\bar{w}}^{\prime\prime}_{k}} + {{\bar{T}}_{k}}{{\bar{w}^{\prime}}_{k}}\delta {{\bar{w}^{\prime}}_{k}} + \bar{E}{{\bar{I}}_{w}}{{\bar{\phi}^{\prime}}_{k}}{{\bar{v}^{\prime}}_{k}}\delta {{\bar{w}}^{\prime\prime}_{k}} - \bar{E}{{\bar{I}}_{v}}{{\bar{\phi}^{\prime}}_{k}}{{\bar{v}}^{\prime\prime}_{k}}\delta {{\bar{w}^{\prime}}_{k}}} \right\}} d{\xi_{k}}} \\ && + \sum\limits_{k = 1}^{{n_{b}}} {{{\int}_{0}^{1}} {\left\{ {\left[ {\bar{E}{{\bar{I}}_{v}}{{\bar{v}}^{\prime\prime}_{k}} + {\Delta} \bar{E}\bar{I}\phi {{\bar{w}}^{\prime\prime}_{k}}} \right]\delta {{\bar{v}}^{\prime\prime}_{k}} + {{\bar{T}}_{k}}\bar{v}^{\prime}\delta {{\bar{v}^{\prime}}_{k}} - \bar{E}{{\bar{I}}_{v}}{{\bar{\phi}^{\prime}}_{k}}{{\bar{w}^{\prime}}_{k}}\delta {{\bar{v}}^{\prime\prime}_{k}} + \bar{E}{{\bar{I}}_{w}}{{\bar{\phi}^{\prime}}_{k}}{{\bar{w}}^{\prime\prime}_{k}}\delta {{\bar{v}^{\prime}}_{k}}} \right\}} d{\xi_{k}}} \\ & &+ \sum\limits_{k = 1}^{{n_{b}}} {{{\int}_{0}^{1}} {\left\{ {\left[ {\left( {\bar{G}\bar{J} + {{\bar{T}}_{k}}\bar{k_{A}^{2}}} \right){{\phi}^{\prime}_{k}}} \right]\delta {{\phi}^{\prime}_{k}} + {\Delta} \bar{E}\bar{I}{{\bar{v}}^{\prime\prime}_{k}}{{\bar{w}}^{\prime\prime}_{k}}\delta {\phi_{k}} - \bar{E}{{\bar{I}}_{v}}{{\bar{v}}^{\prime\prime}_{k}}{{\bar{w}^{\prime}}_{k}}\delta {{\bar \phi}^{\prime}_{k}} + \bar{E}{{\bar{I}}_{w}}{{\bar{v}^{\prime}}_{k}}{{\bar{w}}^{\prime\prime}_{k}}\delta {{\bar \phi}^{\prime}_{k}}} \right\}d{\xi_{k}}} } \\ & &+ \sum\limits_{k = 1}^{{n_{b}}} {{{\int}_{0}^{1}} {{{\bar{T}}_{k}}\delta {{u}^{\prime}_{k}}d\xi } } \end{array} $$
(D21)

Assume that all deflection quantities are function separable, substituting Eq. 5 into Eq. D21 produces the non-dimensional variation of strain energy for the k th blade

$$ \delta\bar{\mathcal{V}}_{k} ={\int}_{\tau_{0}}^{\tau} \left[ \delta {q^{T}_{b}} \bar{K}_{k_{S}} q_{b} +\sum\limits_{i=1}^{n}{{\int}_{0}^{1}}{{\bar{T}_{k}}{{\varphi}^{\prime}_{{u_{k}i}}}} d\xi_{k} \delta q_{u_{k}i} \right] d\tau $$

where \(q_{b} = {\left [ {\begin {array}{*{20}{c}} {{q_{w_{k} i}}}&{{q_{v_{k} i}}}&{{q_{\phi _{k} i}}}&{{q_{u_{k}i}}} \end {array}} \right ]^{T}}\) are the generalized coordinates associated with the strain energy. The 4n × 4n stiffness matrix \(\bar {K}_{k_{S}}\) associated with the generalized coordinates \(\left (q_{w_{k}i}, q_{v_{k}i}, q_{\phi _{k}i}, q_{u_{k}i}\right )\) for the k th blade from the strain variation is

$$ \begin{array}{@{}rcl@{}} {{\bar{K}}_{{k_{S}}}} &=& {{\int}_{0}^{1}} {{{\hat K}_{k_{S}}}d{\xi_{k}}} ;{\Delta} EI = \bar{E}{{\bar{I}}_{v}} - \bar{E}{{\bar{I}}_{w}} \\ {{\hat K}_{k_{S}}} &=& \left[ {\begin{array}{cccc} {\left( \begin{array}{l} \bar{E}{{\bar{I}}_{w}}{{\varphi }^{\prime\prime}_{{w_{k}}i}}{{\varphi }^{\prime\prime}_{{w_{k}}j}}\\ + {{\bar{T}}_{k}}{{\varphi^{\prime}}_{{w_{k}}i}}{{\varphi^{\prime}}_{{w_{k}}j}} \end{array} \right)}&{{q_{{\phi_{k}}\gamma }}{\Delta} EI{\varphi_{\phi \gamma}}{{\varphi }^{\prime\prime}_{{w_{k}}i}}{{\varphi }^{\prime\prime}_{{v_{k}}j}}}&{{q_{v_{k} \gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{{v_{k}}\gamma}}{{\varphi }^{\prime\prime}_{{w_{k}}i}}{\varphi_{{\phi_{k}}j}}}&0\\ {{q_{{\phi_{k}}\gamma }}{\Delta} EI{\varphi_{{\phi_{k}}\gamma}}{{\varphi }^{\prime\prime}_{{v_{k}}i}}{{\varphi }^{\prime\prime}_{{w_{k}}j}}}&{\left( \begin{array}{l} \bar{E}{{\bar{I}}_{v}}{{\varphi }^{\prime\prime}_{{v_{k}}i}}{{\varphi }^{\prime\prime}_{{v_{k}}j}}\\ + {{\bar{T}}_{k}}{{\varphi^{\prime}}_{{v_{k}}i}}{{\varphi^{\prime}}_{{v_{k}}j}} \end{array} \right)}&{{q_{w_{k}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{{w_{k}}\gamma}}{{\varphi }^{\prime\prime}_{{v_{k}}i}}{\varphi_{{\phi_{k}}j}}}&0\\ {{q_{{v_{k}}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{{v_{k}}\gamma}}{\varphi_{{\phi_{k}}i}}{{\varphi }^{\prime\prime}_{{w_{k}}j}}}&{{q_{{w_{k}}\gamma}}{\Delta} EI\varphi_{{w_{k}}\gamma}^{\prime \prime }{\varphi_{{\phi_{k}}i}}\varphi_{{v_{k}}j}^{\prime \prime }}&{\left( \begin{array}{l} \bar{G}\bar{J}{{\varphi^{\prime}}_{{\phi_{k}}i}}{{\varphi^{\prime}}_{{\phi_{k}}j}}\\ + \bar{k}_{a}^{2}{{\bar{T}}_{k}}{{\varphi^{\prime}}_{{\phi_{k}}i}}{{\varphi^{\prime}}_{{\phi_{k}}j}} \end{array} \right)}&0\\ 0&0&0&0 \end{array}} \right]\\ \end{array} $$
(D22)

where double subscript integer index γ implies summation from γ = 1,2,…,n. Note that all the off-diagonal submatrices are nonlinear terms. The subscript integers i and j mean the i th row and j th column of the corresponding submatrices.

Similar to the case for the kinetic energy variation, the single term in the strain energy variation,

$$ {{\int}_{0}^{1}}{{\bar{T}_{k}}{{\varphi}^{\prime}_{{u_{k}i}}}}\xi_{k} \delta q_{u_{k}i} d\xi $$
(D23)

is used to solve for the quantity \(\bar {T}_{k}\). Assume that the blade elongation is negligible, i.e., \(\ddot q_{u_{k}i} = \dot q_{u_{k}i} = q_{u_{k}i} =0\). The last rows of \(\hat M_{k_{BR}} = \hat M^{T}_{k_{RB}}\) in Eq. D6, \(\hat C_{k_{BR}}= - \hat C^{T}_{k_{RB}}\) in Eq. D10, and \({\hat {K}_{k_{BB}}}\) in Eq. D13, and the quantities shown in Eqs. D16 and D23 produce the following equation

$$ {{\int}_{0}^{1}} {\left[ {{\varphi_{{u_{k}}i}}\left( {{{\ddot R}_{x}}{\mathrm{c}} {\theta_{k}} - {{\ddot R}_{y}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{x}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{y}}{\mathrm{c}} {\theta_{k}} - 2{\xi_{k}}{{\dot \vartheta }_{z}} - 2{\varphi_{{v_{k}}j}}{{\dot q}_{{v_{k}}j}} \!- {\xi_{k}}} \right) + {\bar{T}_{k}}{{\varphi^{\prime}}_{{u_{k}}i}}} \right]} d{\xi_{k}}\delta {q_{{u_{k}}i}} = 0 $$

Setting the terms in the bracket to zero yields

$${\bar{T}^{\prime}_{k}} = \left( {{{\ddot R}_{x}}{\mathrm{c}} {\theta_{k}} - {{\ddot R}_{y}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{x}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{y}}{\mathrm{c}} {\theta_{k}} - 2{\xi_{k}}{{\dot \vartheta }_{z}} - 2{\varphi_{{v_{k}}j}}{{\dot q}_{{v_{k}}j}} - {\xi_{k}}} \right)$$

after the following integration by parts is used

$$\begin{array}{l} {{\int}_{0}^{1}} {{{\bar{T}}_{k}}{{\varphi^{\prime}}_{{u_{k}}i}}\delta {q_{{u_{k}}i}}} d{\xi_{k}} = \left. {{{\bar{T}}_{k}}{\varphi_{{u_{k}}i}}\delta {q_{{u_{k}}i}}} \right|_{0}^{1} - {{\int}_{0}^{1}} {\bar{T}^{\prime}{\varphi_{{u_{k}}i}}\delta {q_{{u_{k}}i}}} d\xi \\*[5pt] \Rightarrow {{\int}_{0}^{1}} {{T_{k}}{{\varphi^{\prime}}_{{u_{k}}i}}\delta {q_{{u_{k}}i}}} d\xi = - {{\int}_{0}^{1}} {{{\bar{T}^{\prime}}_{k}}{\varphi_{{u_{k}}i}}\delta {q_{{u_{k}}i}}} d{\xi_{k}} \end{array}$$

with the boundary conditions, \(\bar {T}_{k} = 0\) at ξ = 1 and \(\delta {q_{{u_{k}}i}} = 0 \) at ξ = 0. The centrifugal force can then be solved by

$$ \begin{array}{lcl} {{\bar{T}}_{k}} &=& - {\int}_{{\xi_{k}}}^{1} {\left( {{{\ddot R}_{x}}{\mathrm{c}} {\theta_{k}} - {{\ddot R}_{y}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{x}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{y}}{\mathrm{c}} {\theta_{k}} - 2{\xi_{k}}{{\dot \vartheta }_{z}} - 2{\varphi_{{v_{k}}j}}{{\dot q}_{{v_{k}}j}} - {\xi_{k}}} \right)} d{\xi_{k}}\\ &=& - \left( {1 - {\xi_{k}}} \right)\left[ {{{\ddot R}_{x}}{\mathrm{c}} {\theta_{k}} - {{\ddot R}_{y}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{x}}{\mathrm{s}} {\theta_{k}} - {{\dot R}_{y}}{\mathrm{c}} {\theta_{k}}} \right] + \left( {1 - {\xi_{k}^{2}}} \right){{\dot \vartheta }_{z}}\\ &&+ 2\left( {{\int}_{{\xi_{k}}}^{1} {{\varphi_{{v_{k}}j}}d{\xi_{k}}} } \right){{\dot q}_{{v_{k}}j}} + \frac{1}{2}\left( {1 - {\xi_{k}^{2}}} \right) \end{array} $$
(D24)

From Eqs. D15D22 and D24, the overall stiffness matrix becomes

$$ {{\mathcal{K}}_{k}} = \left[ {\begin{array}{ccc} { \begin{array}{l} \bar{E}{{\bar{I}}_{w}}{{\varphi }^{\prime\prime}_{w_{k}i}}{{\varphi }^{\prime\prime}_{w_{k}j}} \\*[3pt] + \frac{1}{2}\left( {1 - {\xi_{k}^{2}}} \right){{\varphi }^{\prime}_{w_{k}i}}{{\varphi }^{\prime}_{w_{k}j}}\\ - \bar{k}_{m1}^{2}{{\varphi }^{\prime}_{w_{k}i}}{{\varphi }^{\prime}_{w_{k}j}} \end{array} }&{{q_{\phi_{k} \gamma}}{\Delta} EI{\varphi_{\phi_{k} \gamma}}{{\varphi }^{\prime\prime}_{wi}}{{\varphi_{k} }^{\prime\prime}_{vj}}}&{{q_{v_{k}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{v_{k}\gamma}}{{\varphi }^{\prime\prime}_{w_{k}i}}{\varphi_{\phi_{k}j}}}\\*[3pt] {{q_{\phi_{k} \gamma}}{\Delta} EI{\varphi_{\phi_{k} \gamma}}{{\varphi }^{\prime\prime}_{v_{k}i}}{{\varphi }^{\prime\prime}_{w_{k}j}}}&{ \begin{array}{l} \bar{E}{{\bar{I}}_{v}}{{\varphi }^{\prime\prime}_{v_{k}i}}{{\varphi }^{\prime\prime}_{v_{k}j}} - {\varphi_{v_{k}i}}{\varphi_{v_{k}j}}\\ + \frac{1}{2}\left( {1 - {\xi_{k}^{2}}} \right){{\varphi }^{\prime}_{v_{k}i}}{{\varphi }^{\prime}_{v_{k}j}}\\*[3pt] - \bar{k}_{m2}^{2}{{\varphi }^{\prime}_{v_{k}i}}{{\varphi }^{\prime}_{v_{k}j}} \end{array} }&{{q_{w_{k}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{w_{k}\gamma}}{{\varphi }^{\prime\prime}_{v_{k}i}}{\varphi_{\phi_{k} j}}}\\ {{q_{v_{k}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{v_{k}\gamma}}{\varphi_{\phi_{k} i}}{{\varphi }^{\prime\prime}_{w_{k}j}}}&{{q_{w_{k}\gamma}}{\Delta} EI{{\varphi }^{\prime\prime}_{w_{k}\gamma}}{\varphi_{\phi i}}{{\varphi }^{\prime\prime}_{v_{k}j}}}& \begin{array}{l} \bar{G}\bar{J}{{\varphi }^{\prime}_{\phi_{k} i}}{{\varphi }^{\prime}_{\phi_{k} j}} + {\varphi_{\phi_{k} i}}{\varphi_{\phi_{k} j}}{\Delta} {\bar{k}_{m}^{2}}\\ + \frac{1}{2}\left( {1 - {\xi_{k}^{2}}} \right){\bar{k}_{a}^{2}}{{\varphi }^{\prime}_{\phi_{k} i}}{{\varphi }^{\prime}_{\phi_{k} j}} \end{array} \end{array}} \right] $$
(D25)

where double subscript integer γ implies summation from γ = 1,2,…,n. The elements in the off-diagonal submatrices are nonlinear and time varying in the sense that each term has involved with a time-dependent generalized coordinate. These nonlinear terms are one order in magnitude smaller than the other constant terms. However, the nonlinear terms are not negligible when the blade is subject to a constant force producing a static deflection.

System Matrices from Variation of Kinetic and Strain Energies

From Eqs. D4 to D7, the system mass matrix for the multiple blades is

$$ \bar{\mathcal{M}} = {{\int}_{0}^{1}} {\tilde Md\xi ;} \ \ \ \tilde M = \left[ {\begin{array}{cccc} \bar{M}_{h}+{\sum\limits_{k = 1}^{{n_{b}}} {{{\hat M}_{{k_{RR}}}}} }&{{{\hat M}_{{1_{RB}}}}}& {\cdots} &{{{\hat M}_{n{b_{RB}}}}}\\ {\hat M_{{1_{RB}}}^{T} + {{\hat M}_{1{N_{BR}}}}}&{{{\hat M}_{{1_{BB}}}}}& {\cdots} &0\\ {\vdots} & {\vdots} & {\ddots} &0\\ {\hat M_{n{b_{RB}}}^{T} + {{\hat M}_{nb{N_{BR}}}}}&0& {\cdots} &{{{\hat M}_{n{b_{BB}}}}} \end{array}} \right] $$
(D26)

where \(\bar {M}_{h}\) is the non-dimensional mass matrix of the hub and it is a diagonal matrix if the the center of hub is chosen to be the center of mass, and the hub axes are the principal axes of inertia, i.e., \(\bar {M}_{h}=\text {diag}[\bar {m}_{h},\bar {m}_{h},\bar {m}_{h}, \bar {I}_{xx},\bar {I}_{yy},\bar {I}_{zz}]\). Note that all the submatrices are smaller in size than the ones shown earlier because the columns and rows associated with the neglected elongation displacement of the blades uk for k = 1,2,…nb are deleted. The size of the stiffness matrix \(\mathcal {M}\) is (6 + 3nnb) × (6 + 3nnb).

The submatrices introduced by the centrifugal force from the strain energy are nonlinear, i.e,

$$ {\hat M_{k{N_{BR}}}} = \left[ {\begin{array}{cccccc} { - \left( {1 - {\xi_{k}}} \right){q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}{\mathrm{c}} {\theta_{k}}}&{\left( {1 - {\xi_{k}}} \right){q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}{\mathrm{s}} {\theta_{k}}}&0&0&0&0\\ { - \left( {1 - {\xi_{k}}} \right){q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}{\mathrm{c}} {\theta_{k}}}&{\left( {1 - {\xi_{k}}} \right){q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}{\mathrm{s}} {\theta_{k}}}&0&0&0&0\\ { - \left( {1 - {\xi_{k}}} \right){\bar{k}_{a}^{2}}{q_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}{\mathrm{c}} {\theta_{k}}}&{\left( {1 - {\xi_{k}}} \right){\bar{k}_{a}^{2}}{q_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}s{\theta_{k}}}&0&0&0&0 \end{array}} \right] $$

where the double subscript integer i implies summation from i = 1,2,…,n. These additional nonlinear and time-varying terms may be neglected without static deflections of the blades subject to external forces.

From Eqs. D8 to D11, the system gyroscopic matrix for the multiple blades is

$$ \bar{\mathcal{C}} = {{\int}_{0}^{1}} {\tilde Cd\xi ;} \ \ \ \tilde C = \left[ {\begin{array}{cccc} \bar{C}_{h}+{\sum\limits_{k = 1}^{{n_{b}}} {{{\hat C}_{{k_{RR}}}}} }&{{{\hat C}_{{1_{RB}}}}}& {\cdots} &{{{\hat C}_{n{b_{RB}}}}}\\ { - \hat C_{{1_{RB}}}^{T} + {{\hat C}_{1{N_{BR}}}}}&{{{\hat C}_{{1_{BB}}}} + {{\hat C}_{1{N_{BB}}}}}& {\cdots} &0\\ {\vdots} & {\vdots} & {\ddots} &0\\ { - \hat C_{n{b_{RB}}}^{T} + {{\hat C}_{nb{N_{BR}}}}}&0& {\cdots} &{{{\hat C}_{n{b_{BB}}}} + {{\hat C}_{nb{N_{BB}}}}} \end{array}} \right] $$
(D27)

where \(\bar {C}_{h}\) is the non-dimensional gyroscopic matrix of the hub and it it is a zero matrix except, i.e., \(\bar {C}_{h}(4,5)=\bar {I}_{zz}-\bar {I}_{xx}-\bar {I}_{yy}\) and \(\bar {C}_{h}(5,4)= - \bar {C}_{h}(4,5)\). The off-diagonal nonlinear and time varying submatrices are defined by

$$ {\hat C_{k{N_{RB}}}} = \left[\!\!\! {\begin{array}{*{20}{c}} {\left( {1 - {\xi_{k}}} \right){q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}s{\theta_{k}}}&{\left( {1 - {\xi_{k}}} \right){q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}c{\theta_{k}}} & 0&0&0&{\left( {1 - {\xi_{k}^{2}}} \right){q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}}\\ {\left( {1 - {\xi_{k}}} \right){q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}s{\theta_{k}}}&{\left( {1 - {\xi_{k}}} \right){q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}c{\theta_{k}}}&0&0&0&{\left( {1\! - {\xi_{k}^{2}}} \right){q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}}\\ {\left( {1 - {\xi_{k}}} \right){\bar{k}_{a}^{2}}{q_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}s{\theta_{k}}} & {\left( {1 - {\xi_{k}}} \right){\bar{k}_{a}^{2}}{q_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}c{\theta_{k}}}&0&0&0&{\left( {1 - {\xi_{k}^{2}}} \right){\bar{k}_{a}^{2}}{q_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}} \end{array}} \!\right] $$

and the diagonal nonlinear submatrices are

$$ {\hat C_{k{N_{BB}}}} = \left[ {\begin{array}{ccc} 0& - 2{q_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}i}}{{\varphi }^{\prime}_{{w_{k}}j}}\left( \varphi^{\prime\prime\prime}_{{v_{k}}j} \left/\beta_{j}^{4}\right)\right.&0\\ 0&- 2{q_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}i}}{{\varphi }^{\prime}_{{v_{k}}j}}\left( \varphi^{\prime\prime\prime}_{{v_{k}}j}\left/\beta_{j}^{4}\right)\right.&0\\ 0&- 2{q_{{\phi_{k}}i}}{\bar{k}_{a}^{2}}{{\varphi }^{\prime}_{{\phi_{k}}i}}{{\varphi }^{\prime}_{{\phi_{k}}j}}\left( \varphi^{\prime\prime\prime}_{{v_{k}}j}\left/ \beta_{j}^{4}\right)\right.&0 \end{array}} \right] $$

for k = 1,2,…,nb and j = 1,2,…,n. Note that double subscript integer i implies summation from i = 1,2,…,n. These nonlinear matrices destroy the anti-symmetry of the gyroscopic matrix. They represent only one-way coupling between the hub coordinates and the blade generalized coordinates.

From Eqs. D12 and D25, the system stiffness matrix for multiple blades is

$$ \bar{\mathcal{K}} = {{\int}_{0}^{1}} {\hat {\mathcal{K}}} d\xi ; \ \ \ {\hat {\mathcal{K}}} = \left[ {\begin{array}{*{20}{c}} \bar{K_{h}}+{\sum\limits_{k = 1}^{{n_{b}}} {{\hat K_{{k_{RR}}}}} }&{{\hat K_{{1_{RB}}}}}& {\cdots} &{{\hat K_{n{b_{RB}}}}}\\ {\hat {K}_{{1_{RB}}}^{T}}&{{{\mathcal{K}}_{1}}}& {\cdots} &0\\ {\vdots} & {\vdots} & {\ddots} &0\\ {{\hat K}_{n{b_{RB}}}^{T}}&0& {\cdots} &{{{\mathcal{K}}_{{n_{b}}}}} \end{array}} \right] $$
(D28)

where \(\bar {K}_{h}\) is the non-dimensional stiffness matrix of the hub and it it is diagonal for the principal axes, i.e., \(\bar {K}_{h}=\text {diag}[0,0,0, \bar {I}_{zz}-\bar {I}_{yy} ,\bar {I}_{zz}-\bar {I}_{xx},0]\).

Stiffness Matrix with Solar Radiation Pressure

$$ \bar{\mathcal{K}} = {{\int}_{0}^{1}} {\tilde {K}} d\xi ; \ {\tilde{K}} = \left[ {\begin{array}{cccc} {\sum\limits_{k = 1}^{{n_{b}}} {{\hat K_{{k_{RR}}}}}+\hat{K}_{kP_{RR}} }&{{\hat K_{{1_{RB}}}}} +\hat{K}_{1P_{RS}} & {\cdots} &{{\hat K_{n{b_{RB}}}}}+\hat{K}_{nbP_{RS}}\\ {\hat{ K}_{{1_{RB}}}^{T}}&{{{\mathcal{K}}_{1}}}+\hat{K}_{1P_{SS}}& {\cdots} &0\\ {\vdots} & {\vdots} & {\ddots} &0\\ {\hat{ K}_{n{b_{RB}}}^{T}}&0& {\cdots} &{{{\mathcal{K}}_{{n_{b}}}}}+\hat{K}_{nbP_{SS}} \end{array}} \right] $$
(D29)

where

$$ {\hat K_{k{P_{RR}}}} = \left( {\begin{array}{cccccc} 0&0&0&0&{ - \bar{p}}&0\\ 0&0&0&{\bar{p}}&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&{\bar{p}{\xi_{k}}{\mathrm{c}}{\theta_{k}}}&{ - \bar{p}{\xi_{k}}{\mathrm{s}} {\theta_{k}}}&0 \end{array}} \right) $$

and

$$ {\hat K_{k{P_{RB}} = }}\left( {\begin{array}{ccc} {\bar{p}{{\varphi^{\prime}}_{{w_{k}}j}}c\theta }&0&{\bar{p}{\varphi_{{\phi_{k}}j}}s\theta }\\ { - \bar{p}{{\varphi^{\prime}}_{{w_{k}}j}}s\theta }&0&{\bar{p}{\varphi_{{\phi_{k}}j}}c\theta }\\ 0&0&0\\ 0&{ - \bar{p}{\varphi_{{v_{k}}j}}c\theta }&0\\ 0&{\bar{p}{\varphi_{{v_{k}}j}}s\theta }&0\\ 0&0&{\bar{p}{\xi_{k}}{\varphi_{{\phi_{k}}j}}} \end{array}} \right) $$

and

$$ {\hat K_{k{P_{SS}}}} = \left( {\begin{array}{*{20}{c}} 0&0&0\\ 0&0&{\bar{p}{\varphi_{{v_{k}}i}}{\varphi_{{\phi_{k}}j}}}\\ 0&0&0 \end{array}} \right) $$

for i,j = 1,2,…,n.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juang, JN., Warren, J.E., Horta, L.G. et al. A Multi-Blade Model for Heliogyro Solar Sail Structural Dynamic Analysis. J Astronaut Sci 67, 335–360 (2020). https://doi.org/10.1007/s40295-019-00153-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00153-8

Keywords

Navigation