Skip to main content
Log in

Nonlinear analysis of a floating offshore wind turbine with internal resonances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, a coupled 6-DOF model of the NREL 5-MW floating offshore wind turbine is proposed. The model takes into account gravitational, aerodynamic, hydrostatic, hydrodynamic and mooring loads. Wind and sea waves influence is studied through a nonlinear dynamic analysis for two types of platform configurations: OC3-Hywind spar buoy and MIT/NREL TLP. Possible internal resonances were detected by calculating the natural frequencies of the system, with a one-to-one resonance condition for the OC3-Hywind spar buoy, and a two-to-one resonance condition for the MIT/NREL TLP, for the heave, roll and pitch motions. The application of the method of multiple scales to the heave and pitch dynamics confirmed the existence of these resonances. The obtained frequency response curves were validated by the use of a direct numerical method, based on the finite difference method combined with a pseudo-arclength continuation technique. Cyclic-fold and Hopf bifurcations are detected when the MIT/NREL TLP platform is used. For certain excitation frequencies, Poincaré sections generated smooth densely filled curves indicating the presence of higher-order quasiperiodic motion for the heave and pitch displacements. Large jumps of the motion amplitude for the frequency and force responses indicate the existence of potential damage to the mooring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\({{\textbf{q}}= \left[ u\;v\;w\;\phi \;\theta \;\psi \right] ^{T}}\) :

Generalized coordinate vector of the FOWT

\({{\textbf{q}_s}= \left[ u_s\;v_s\;w_s\;\phi _s\;\theta _s\;\psi _s\right] ^T}\) :

Static equilibrium vector of the FOWT

\({\textbf{Q}_{G}= \left[ \textbf{F}_G \; \textbf{M}_G \right] ^T}\) :

Gravitational load, force (N) and moment (N m)

\({\textbf{Q}_{A}= \left[ \textbf{F}_A \; \textbf{M}_A \right] ^T}\) :

Aerodynamic load, force (N) and moment (N m)

\({\textbf{Q}_{B}= \left[ \textbf{F}_B \; \textbf{M}_B \right] ^T}\) :

Buoyancy load, force (N) and moment (N m)

\({\textbf{Q}_{M}= \left[ \textbf{F}_M \; \textbf{M}_M \right] ^T}\) :

Mooring load, force (N) and moment (N m)

\({\textbf{Q}_{H}= \left[ \textbf{F}_H \; \textbf{M}_H \right] ^T}\) :

Hydrodynamic load, force (N) and moment (N m)

\({\textbf{Q}_{D}= \left[ \textbf{F}_D \; \textbf{M}_D \right] ^T}\) :

Damping load, force (N) and moment (N m)

\(\textbf{V}_{p,t,n,r}\) :

Center of mass velocity (m/s) of the platform, tower, nacelle and rotor, respectively

\({\textbf{U}_{a}=\left[ U_a \; 0 \; 0\right] ^T}\) :

Wind velocity (m/s)

\({\textbf{U}= \left[ U_x \; 0 \; U_z\right] ^T}\) :

Water particle velocity (m/s)

\({\varvec{\Gamma }}\) :

Angular velocity of the FOWT

\(\textbf{K}_{G,A,B,M}\) :

Stiffness matrix due to Gravitational, Aerodynamic, Buoyancy, Mooring loads

\(\textbf{K}_{nl}({\textbf{q}})\) :

Nonlinear stiffness vector of the FOWT

\(\textbf{D}_A\) :

Aerodynamic damping matrix

\(\textbf{M}\) :

Mass matrix of the FOWT

\(\textbf{A}\) :

Added mass matrix

\(\textbf{B}\) :

Added damping matrix

CG\(\left( x_g,y_g,z_g\right) \) :

Center of gravity of the FOWT

CB\(\left( x_B,y_B,z_B\right) \) :

Center of buoyancy of the FOWT

P\(_{1,2,3,4}\) :

Mooring attachment points

\(K_T\) :

Longitudinal stiffness of a single tether (N m\(^{-1}\))

G\(_{p,t,n,r,b}\) :

Center of mass of the platform, tower, nacelle, rotor and blades, respectively

T :

Kinetic energy of the FOWT

\(V_s\) :

Submerged volume at static equilibrium

\(V_q\) :

Variable submerged volume of the FOWT

\(A_{wp}\) :

Water plane area

\(J_{x,y}\) :

First moments of area of the water plane cross section

\(J_{xx,xy,yy}\) :

Second moments of area of the water plane cross section

g :

Gravitational constant (m s\(^{-2} \))

\( \rho _a \) :

Air density (kg m\(^{-3} \))

\( \rho _w \) :

Water density (kg m\(^{-3} \))

\( m_{p,t,n,r,T} \) :

Mass of platform, tower, nacelle, rotor and FOWT (kg)

\( \textbf{I}_{p,t,n,r} \) :

Inertia matrix of platform, tower, nacelle and rotor (kg m\(^2\))

\( \Omega \) :

Circular wave frequency (rad s\(^{-1}\))

\( \omega \) :

Circular natural frequency (rad s\(^{-1}\))

H :

Wave height (m)

k :

Wave number

References

  1. Lee, J., Zhao, F.: Global Offshore Wind Report 2021. Tech. rep, Global Wind Energy Council (2022)

  2. Statoil, Hywind Scotland Pilot Park, Tech. Rep. April, Statoil (2015)

  3. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Tech. Rep. NREL/TP-500-38060, National Renewable Energy Laboratory, U.S. Department of Energy (2009)

  4. Rinker, J., Dykes, K.: WindPACT Reference Wind Turbines. Tech. rep, National Renewable Energy Laboratory, USA (2018)

  5. Jonkman, J., Fylling, I., Nichols, J., Larsen, T., Hansen, A., Kohlmeier, M., Nygaard, T., Maus, K., Pascual, V.J., Merino, D., Karimirad, M., Gao, Z., Moan, T., Shi, W., Park, H.: Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling. Tech. rep, National Renewable Energy Laboratory, USA (2010)

  6. Zhao, W., Cheng, P., Wan, D.: Numerical computation of aerodynamic performances of nrel offshore 5-mw baseline wind turbine. In: ISOPE Pacific/Asia Offshore Mechanics Symposium, ISOPE, 2014, pp. ISOPE–P

  7. Xu, X.: Dynamic Analysis of a Spar-type Offshore Floating Wind Turbine and its Mooring System, Ph.D. thesis, University of Strathclyde (2020)

  8. Javier, L.Q., Robles, E., Llorente, J.I., Touzon, I., Joseba, L.M.: A simplified modeling approach of floating offshore wind turbines for dynamic simulations. Energies, 1–16 (2022)

  9. Jonkman, J.: Definition of the Floating System for Phase IV of OC3, Tech. Rep. NREL/TP-500-47535, National Renewable Energy Laboratory, USA (2010)

  10. Vicente, D.L.S.: Design and Structural Analysis of a Tension Leg Platform for Offshore Wind Power, Ph.D. thesis, TECNICO LISBOA (2019)

  11. Robertson, A., Jonkman, J., Masciola, M.D., Song, H.: Definition of the Semisubmersible Floating System for Phase II of OC4. Tech. rep, National Renewable Energy Laboratory, USA (2014)

  12. Larsen, T.J., Hansen, A.M.: How 2 HAWC2 , the User’s Manual (2014)

  13. NREL, OpenFAST Documentation (2022)

  14. ANSYS AQWA, http://www.ansys.com

  15. Cheema, A., Zhu, M., Chai, S., Chin, C., Jin, Y.: Motion response of a floating offshore wind turbine foundation. In: 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 1–4 (2014)

  16. Jonkman, J.M., Matha, D.: Dynamics of offshore floating wind turbines-analysis of three concepts. Wind Energy 14(4), 557–569 (2011)

    Article  Google Scholar 

  17. Chakrabarti, S.K.: Hydrodynamics of Offshore Structures. WIT Press (1987)

  18. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 7(4), 145–152 (1973)

    Article  Google Scholar 

  19. Mook, D.T., Marshall, L.R., Nayfeh, A.H.: Subharmonic and superharmonic resonances in the pitch and roll modes of ship motions. J. Hydronautics 8(1), 32–40 (1974)

    Article  Google Scholar 

  20. Birman, V.: On the nonlinear uncoupled roll and pitch of submerged vehicules. Ocean Eng. 13(6), 621–625 (1986)

    Article  Google Scholar 

  21. Bikdash, M., Balachandran, B., Nayfeh, A.H.: Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dyn. 75(6), 101–124 (1994)

    Article  Google Scholar 

  22. Jingrui, Z., Yougang, T., Wenjun, S.: A study on the combination resonance response of a classic spar platform. J. Vib. Control 16(14), 2083–2107 (2010)

    Article  MathSciNet  Google Scholar 

  23. Gavassoni, E., Gonçalves, P.B., Roehl, D.M.: Nonlinear vibration modes and instability of a conceptual model of a spar platform. Nonlinear Dyn. 76, 809–826 (2014)

    Article  MathSciNet  Google Scholar 

  24. Farrugia, R., Sant, T., Micallef, D.: Investigating the aerodynamic performance of a model offshore floating wind turbine. Renew. Energy 70, 24–30 (2014)

    Article  Google Scholar 

  25. Tran, T.T., Kim, D.-H.: Fully coupled aero-hydrodynamic analysis of a semi-submersible fowt using a dynamic fluid body interaction approach. Renew. Energy 92, 244–261 (2016)

    Article  Google Scholar 

  26. Meng, L., He, Y.-P., Zhao, Y.-S., Yang, J., Yang, H., Han, Z.-L., Yu, L., Mao, W.-G., Du, W.-K.: Dynamic response of 6 mw spar type floating offshore wind turbine by experiment and numerical analyses. China Ocean Eng. 34(5), 608–620 (2020)

    Article  Google Scholar 

  27. Huang, Y., Wan, D.: Investigation of interference effects between wind turbine and spar-type floating platform under combined wind-wave excitation. Sustainability 12(1), 246 (2019)

    Article  Google Scholar 

  28. Ruzzo, C., Arena, F.: A numerical study on the dynamic response of a floating spar platform in extreme waves. J. Mar. Sci. Technol. 24, 1135–1152 (2019)

    Article  Google Scholar 

  29. Rony, J., Karmakar, D., Soares, C.G.: Coupled dynamic analysis of spar-type floating wind turbine under different wind and wave loading. Mar Syst Ocean Technol 16, 169–198 (2021)

    Article  Google Scholar 

  30. Ghabraei, S., Moradi, H., Vossoughi, G.: Investigation of the effect of the added mass fluctuation and lateral vibration absorbers on the vertical nonlinear vibrations of the offshore wind turbine. Nonlinear Dyn. 103, 1499–1515 (2021)

    Article  Google Scholar 

  31. Basbas, H., Liu, Y.C., Laghrouche, S., Hilairet, M., Plestan, F.: Review on floating offshore wind turbine models for nonlinear control design. Energies 15(15), 1–27 (2022)

    Article  Google Scholar 

  32. Zeng, X., Shi, W., Feng, X., Shao, Y., Li, X.: Investigation of higher-harmonic wave loads and low-frequency resonance response of floating offshore wind turbine under extreme wave groups. Mar. Struct. 89(January), 103401 (2023)

    Article  Google Scholar 

  33. Habib, G., Giorgi, G., Davidson, J.: Coexisting attractors in floating body dynamics undergoing parametric resonance. Acta Mech. 233(6), 2351–2367 (2022)

    Article  Google Scholar 

  34. Giorgi, G., Gomes, R.P., Bracco, G., Mattiazzo, G.: Numerical investigation of parametric resonance due to hydrodynamic coupling in a realistic wave energy converter. Nonlinear Dyn. 101, 153–170 (2020)

    Article  Google Scholar 

  35. Li, W., Tang, Y., Wang, B., Li, Y.: Internal resonances for the heave roll and pitch modes of a spar platform considering wave and vortex exciting loads in heave main resonance. J. Mar. Sci. Appl. 17(2), 265–272 (2018)

    Article  Google Scholar 

  36. Journée, J.M.J., Massie, W.W.: Offshore Hydrodynamics, Delft University of Technology (2001)

  37. Matha, D., Fischer, T., Kuhn, M., Jonkman, J.: Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform, with a Comparison to Other Floating Turbine Concepts, Tech. Rep. NREL/CP-500-46725, National Renewable Energy Laboratory, USA (2010)

  38. Spera, D.A.: Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, ASME Press (2009)

  39. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Wind Energy Handbook. Wiley (2001)

  40. Lee, K.H.: Responses of Floating Wind Turbines to Wind and Wave Excitation, Ph.D. thesis, Massachusetts Institute of Technology University of Michigan (2005)

  41. Al-solihat, M.K.H.: Dynamics Modeling , Simulation and Analysis of a Floating Offshore Wind Turbine, Ph.D. thesis, McGill University, Montreal Canada (2017)

  42. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley (2011)

  43. Patel, M.H.: Dynamics of Offshore Structures, Butterworth & Co. (Publishers) Ltd (1988)

  44. Bae, Y.H.: Coupled dynamic analysis of multiple unit floating offshore wind turbine, Ph.D. thesis, Texas A &M University (2013)

  45. Lupton, R.: Frequency-domain modelling of floating wind turbines, Ph.D. thesis, University of Cambridge (2014)

  46. Kurian, V.J., Ng, C.Y., Liew, M.S.: Dynamic Responses of Classic Spar Platforms Subjected to Long Crested Waves (2012)

  47. Morison, J.R., Johnson, J.W., Schaaf, S.A.: The force exerted by surface waves on piles. J. Petrol. Technol. 2(05), 149–154 (1950)

    Article  Google Scholar 

  48. Chakrabarti, S.K.: Handbook of Offshore Engineering, Elsevier (2005)

  49. Newman, J.N.: Marine Hydrodynamics, The MIT Press (2017)

  50. Mirzaei, F., Tavakoli, A., Tashakori, Z.: Stability analysis of TLP floating wind turbine under severe environmental loading condition to cite this version: HAL Id : hal-01856187 Stability Analysis of TLP Floating Wind Turbine Under Severe (2018)

  51. Van Dao, B., Penzien, J.: Comparison of treatments of non-linear drag forces acting on fixed offshore platforms. Appl. Ocean Res. 4(2), 66–72 (1982)

    Article  Google Scholar 

  52. Matha, D.: Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009, Tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2010)

  53. Ramachandran, G., Robertson, A., Jonkman, J., Masciola, M.D.: Investigation of response amplitude operators for floating offshore wind turbines. In: ISOPE International Ocean and Polar Engineering Conference, ISOPE, pp. ISOPE–I (2013)

  54. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley (2011)

  55. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, Wiley (1995)

  56. Meirovitch, L.: Methods of Analytical Dynamics, Courier Corporation (2010)

  57. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley (2008)

  58. Sassi, S.B., Najar, F.: Strong nonlinear dynamics of mems and nems structures based on semi-analytical approaches. Commun. Nonlinear Sci. Numer. Simul. 61, 1–21 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mehdia GHOZLANE and Fehmi NAJAR. The first draft of the manuscript was written by Mehdia GHOZLANE and Fehmi NAJAR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to F. Najar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghozlane, M., Najar, F. Nonlinear analysis of a floating offshore wind turbine with internal resonances. Nonlinear Dyn 112, 1729–1757 (2024). https://doi.org/10.1007/s11071-023-09120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09120-3

Keywords

Navigation