Skip to main content

Advertisement

Log in

Myocarditis in Athletes: Risk Factors and Relationship with Strenuous Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Amidst the SARS-CoV-2 pandemic, myocarditis in athletes has demanded increased attention primarily because of the risk of sudden cardiac death. While most athletes who experience myocardial inflammation recover, extensive measures for screening and diagnosis are taken because of the possibility of cardiac necrosis, fibrosis, and remodeling. Several risk factors have been identified that may contribute to the development of this inflammatory response, predominantly a history of viral or bacterial upper-respiratory infections. Recent research suggests new risks specific to athletes remain in question, such as the intensity and longevity of sustained exercise, vaccination status, and genetic and epidemiologic factors. Electrocardiography, echocardiography, and cardiac magnetic resonance imaging are commonly utilized for the diagnosis of myocarditis; however, reference standards are lacking because of the variety of clinical presentations. In this article, we discuss the epidemiology, pathophysiology, and presentation of myocarditis in athletes. We then review the available literature to provide a deeper insight into the diagnostic testing methods available, with the aim of outlining the efficacy and prognostic value. Next, we discuss an algorithmic approach to patient care and treatment based upon hemodynamic stability, symptoms, and findings on testing. Finally, this article reviews the current return to play guidelines and the rationale for revisions to return-to-play protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Writing Committee, Gluckman TJ, Bhave NM, et al. ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79(17):1717–56. https://doi.org/10.1016/j.jacc.2022.02.003.

    Article  CAS  PubMed Central  Google Scholar 

  2. Modica G, Bianco M, Sollazzo F, et al. Myocarditis in athletes recovering from COVID-19: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19(7):4279. https://doi.org/10.3390/ijerph19074279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lynge TH, Nielsen TS, Gregers Winkel B, Tfelt-Hansen J, Banner J. Sudden cardiac death caused by myocarditis in persons aged 1–49 years: a nationwide study of 14 294 deaths in Denmark. Forensic Sci Res. 2019;4(3):247–56. https://doi.org/10.1080/20961790.2019.1595352.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Compagnucci P, Volpato G, Falanga U, et al. Myocardial inflammation, sports practice, and sudden cardiac death: 2021 update. Medicina (Kaunas). 2021;57(3):277. https://doi.org/10.3390/medicina57030277.

    Article  PubMed  Google Scholar 

  5. Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet. 2012;379(9817):738–47. https://doi.org/10.1016/S0140-6736(11)60648-X.

    Article  PubMed  Google Scholar 

  6. Palmisano A, Darvizeh F, Cundari G, et al. Advanced cardiac imaging in athlete’s heart: unravelling the grey zone between physiologic adaptation and pathology. Radiol Med. 2021;126(12):1518–31. https://doi.org/10.1007/s11547-021-01411-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghorayeb N, Stein R, Daher DJ, et al. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine updated guidelines for sports and exercise cardiology: 2019 [published correction appears in Arq Bras Cardiol. 2019 Sep 02;113(2):300]. Arq Bras Cardiol. 2019;112(3):326–68. https://doi.org/10.5935/abc.20190048.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pomiato E, Perrone MA, Palmieri R, Gagliardi MG. Pediatric myocarditis: what have we learnt so far? J Cardiovasc Dev Dis. 2022;9(5):143. https://doi.org/10.3390/jcdd9050143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castelletti S, Gati S. The female athlete’s heart: overview and management of cardiovascular diseases. Eur Cardiol. 2021;16: e47. https://doi.org/10.15420/ecr.2021.29.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ruuskanen O, Luoto R, Valtonen M, Heinonen OJ, Waris M. Respiratory viral infections in athletes: many unanswered questions. Sports Med. 2022;52(9):2013–21. https://doi.org/10.1007/s40279-022-01660-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Petek BJ, Baggish AL. Current controversies in pre-participation cardiovascular screening for young competitive athletes. Expert Rev Cardiovasc Ther. 2020;18(7):435–42. https://doi.org/10.1080/14779072.2020.1787154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper LT Jr, Keren A, Sliwa K, Matsumori A, Mensah GA. The global burden of myocarditis: part 1: a systematic literature review for the global burden of diseases, injuries, and risk factors 2010 study. Glob Heart. 2014;9(1):121–9. https://doi.org/10.1016/j.gheart.2014.01.007.

    Article  PubMed  Google Scholar 

  13. Daniels CJ, Rajpal S, Greenshields JT, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021;6(9):1078–87. https://doi.org/10.1001/jamacardio.2021.2065.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Romagnoli S, Sbrollini A, Marcantoni I, Morettini M, Burattini L. Review on cardiorespiratory complications after SARS-CoV-2 infection in young adult healthy athletes. Int J Environ Res Public Health. 2022;19(9):5680. https://doi.org/10.3390/ijerph19095680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harmon KG, Asif IM, Maleszewski JJ, et al. Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes: a decade in review. Circulation. 2015;132(1):10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moulson N, Petek BJ, Drezner JA, et al. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation. 2021;144(4):256–66. https://doi.org/10.1161/CIRCULATIONAHA.121.054824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martinez MW, Tucker AM, Bloom OJ, et al. Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening. JAMA Cardiol. 2021;6(7):745–52. https://doi.org/10.1001/jamacardio.2021.0565.

    Article  PubMed  Google Scholar 

  18. Maron BJ, Haas TS, Ahluwalia A, Rutten-Ramos SC. Incidence of cardiovascular sudden deaths in Minnesota high school athletes. Heart Rhythm. 2013;10(3):374–7. https://doi.org/10.1016/j.hrthm.2012.11.024.

    Article  PubMed  Google Scholar 

  19. Coronado MJ, Brandt JE, Kim E, et al. Testosterone and interleukin-1β increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. Am J Physiol Heart Circ Physiol. 2012;302(8):H1726–36. https://doi.org/10.1152/ajpheart.00783.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J Am Coll Cardiol. 2016;67(18):2108–15. https://doi.org/10.1016/j.jacc.2016.02.062.

    Article  PubMed  Google Scholar 

  21. Tschöpe C, Ammirati E, Bozkurt B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18(3):169–93. https://doi.org/10.1038/s41569-020-00435-x.

    Article  CAS  PubMed  Google Scholar 

  22. Woudstra L, Juffermans LJM, van Rossum AC, Niessen HWM, Krijnen PAJ. Infectious myocarditis: the role of the cardiac vasculature. Heart Fail Rev. 2018;23(4):583–95. https://doi.org/10.1007/s10741-018-9688-x.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–48. https://doi.org/10.1093/eurheartj/eht210.

    Article  PubMed  Google Scholar 

  24. Rezkalla SH, Kloner RA. Viral myocarditis: 1917–2020: from the influenza A to the COVID-19 pandemics. Trends Cardiovasc Med. 2021;31(3):163–9. https://doi.org/10.1016/j.tcm.2020.12.007.

    Article  CAS  PubMed  Google Scholar 

  25. Abou Hassan OK, Sheng CC, Wang TKM, Cremer PC. SARS-CoV-2 myocarditis: insights into incidence, prognosis, and therapeutic implications. Curr Cardiol Rep. 2021;23(9):129. https://doi.org/10.1007/s11886-021-01551-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arbustini E, Narula N, Giuliani L, Di Toro A. Genetic basis of myocarditis: myth or reality? In: Caforio ALP, editor. Myocarditis: pathogenesis, diagnosis and treatment. Cham: Springer International Publishing; 2020. p. 45–89.

    Chapter  Google Scholar 

  27. Dong H, Qi Y, Kong X, Wang Z, Fang Y, Wang J. PD-1/PD-L1 inhibitor-associated myocarditis: epidemiology, characteristics, diagnosis, treatment, and potential mechanism. Front Pharmacol. 2022;13: 835510. https://doi.org/10.3389/fphar.2022.835510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puzanov I, Subramanian P, Yatsynovich YV, et al. Clinical characteristics, time course, treatment and outcomes of patients with immune checkpoint inhibitor-associated myocarditis [published correction appears in J Immunother Cancer. 2021 Nov;9(11):]. J Immunother Cancer. 2021;9(6): e002553. https://doi.org/10.1136/jitc-2021-002553.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Volpato G, Falanga U, Cipolletta L, et al. Sports activity and arrhythmic risk in cardiomyopathies and channelopathies: a critical review of European guidelines on sports cardiology in patients with cardiovascular diseases. Medicina (Kaunas). 2021;57(4):308. https://doi.org/10.3390/medicina57040308.

    Article  PubMed  Google Scholar 

  30. Magnani JW, Danik HJS, Dec GW Jr, DiSalvo TG. Survival in biopsy-proven myocarditis: a long-term retrospective analysis of the histo-pathologic, clinical, and hemodynamic predictors. Am Heart J. 2006;151:463–70. https://doi.org/10.1016/j.ahj.2005.03.037.

    Article  PubMed  Google Scholar 

  31. Peretto G, Sala S, Rizzo S, Palmisano A, Esposito A, De Cobelli F, et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J Am Coll Cardiol. 2020;75:1046–57. https://doi.org/10.1016/j.jacc.2020.01.036.

    Article  PubMed  Google Scholar 

  32. Ferrero P, Piazza I, Lorini LF, Senni M. Epidemiologic and clinical profiles of bacterial myocarditis: report of two cases and data from a pooled analysis. Indian Heart J. 2020;72(2):82–92. https://doi.org/10.1016/j.ihj.2020.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eichhorn C, Bière L, Schnell F, et al. Myocarditis in athletes is a challenge: diagnosis, risk stratification, and uncertainties. JACC Cardiovasc Imaging. 2020;13(2 Pt 1):494–507. https://doi.org/10.1016/j.jcmg.2019.01.039.

    Article  PubMed  Google Scholar 

  34. Jones AW, Davison G. Exercise, immunity, and illness. In: Zoladz JA (ed) EdMuscle and exercise physiology. Cambridge, MA, USA: Academic Press; 2019. pp. 317–44, ISBN 978-0-12-814593-7.

    Google Scholar 

  35. Martin SA, Pence BD, Woods JA. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev. 2009;37(4):157–64. https://doi.org/10.1097/JES.0b013e3181b7b57b.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Małek ŁA, Bucciarelli-Ducci C. Myocardial fibrosis in athletes: current perspective. Clin Cardiol. 2020;43(8):882–8. https://doi.org/10.1002/clc.23360.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baggio C, Gagno G, Porcari A, et al. Myocarditis: which role for genetics? Curr Cardiol Rep. 2021;23(6):58. https://doi.org/10.1007/s11886-021-01492-5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heidecker B, Kittleson MM, Kasper EK, et al. Transcriptomic biomarkers for the accurate diagnosis of myocarditis. Circulation. 2011;123(11):1174–84. https://doi.org/10.1161/CIRCULATIONAHA.110.002857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cooper LT Jr, Onuma OK, Sagar S, et al. Genomic and proteomic analysis of myocarditis and dilated cardiomyopathy. Heart Fail Clin. 2010;6(1):75–85. https://doi.org/10.1016/j.hfc.2009.08.012.

    Article  PubMed  Google Scholar 

  41. Wiltshire SA, Leiva-Torres GA, Vidal SM. Quantitative trait locus analysis, pathway analysis, and consomic mapping show genetic variants of Tnni3k, Fpgt, or H28 control susceptibility to viral myocarditis. J Immunol. 2011;186(11):6398–405. https://doi.org/10.4049/jimmunol.1100159.

    Article  CAS  PubMed  Google Scholar 

  42. Lota AS, Hazebroek MR, Theotokis P, et al. Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy. Circulation. 2022;146(15):1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campuzano O, Fernández-Falgueras A, Sarquella-Brugada G, et al. A genetically vulnerable myocardium may predispose to myocarditis. J Am Coll Cardiol. 2015;66(25):2913–4. https://doi.org/10.1016/j.jacc.2015.10.049.

    Article  PubMed  Google Scholar 

  44. Xiong D, Lee GH, Badorff C, et al. Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: a genetic predisposition to viral heart disease. Nat Med. 2002;8(8):872–7. https://doi.org/10.1038/nm737.

    Article  CAS  PubMed  Google Scholar 

  45. Belkaya S, Kontorovich AR, Byun M, et al. Autosomal recessive cardiomyopathy presenting as acute myocarditis. J Am Coll Cardiol. 2017;69(13):1653–65. https://doi.org/10.1016/j.jacc.2017.01.043.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li HS, Ligons DL, Rose NR. Genetic complexity of autoimmune myocarditis. Autoimmun Rev. 2008;7(3):168–73. https://doi.org/10.1016/j.autrev.2007.11.010.

    Article  CAS  PubMed  Google Scholar 

  47. Poller W, Haas J, Klingel K, et al. Familial recurrent myocarditis triggered by exercise in patients with a truncating variant of the desmoplakin gene. J Am Heart Assoc. 2020;9(10): e015289. https://doi.org/10.1161/JAHA.119.015289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knowlton KU. Myocarditis: an intersection between genetic and acquired causes of human cardiomyopathy. J Am Coll Cardiol. 2017;69(13):1666–8. https://doi.org/10.1016/j.jacc.2017.02.008.

    Article  PubMed  Google Scholar 

  49. Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012;13(3):175–88. https://doi.org/10.1038/nrg3114.

    Article  CAS  PubMed  Google Scholar 

  50. Curione M, Barbato M, De Biase L, Viola F, Lo Russo L, Cardi E. Prevalence of coeliac disease in idiopathic dilated cardiomyopathy. Lancet. 1999;354(9174):222–3. https://doi.org/10.1016/s0140-6736(99)01501-9.

    Article  CAS  PubMed  Google Scholar 

  51. Wijetunga M, Rockson S. Myocarditis in systemic lupus erythematosus. Am J Med. 2002;113(5):419–23.

    Article  PubMed  Google Scholar 

  52. Pfizenmaier DH, Al Atawi FO, Castillo Y, Chandrasekaran K, Cooper LT. Predictors of left ventricular dysfunction in patients with Takayasu’s or giant cell aortitis. Clin Exp Rheumatol. 2004;22(6 Suppl. 36):S41–5.

    CAS  PubMed  Google Scholar 

  53. Zawadowski GM, Klarich KW, Moder KG, Edwards WD, Cooper LT Jr. A contemporary case series of lupus myocarditis. Lupus. 2012;21(13):1378–84. https://doi.org/10.1177/0961203312456752.

    Article  CAS  PubMed  Google Scholar 

  54. Jain A, Norton N, Bruno KA, Cooper LT Jr, Atwal PS, Fairweather D. Sex differences, genetic and environmental influences on dilated cardiomyopathy. J Clin Med. 2021;10(11):2289. https://doi.org/10.3390/jcm10112289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Case LK, Toussaint L, Moussawi M, et al. Chromosome y regulates survival following murine coxsackievirus b3 infection. G3 (Bethesda). 2012;2(1):115–21. https://doi.org/10.1534/g3.111.001610.

    Article  CAS  PubMed  Google Scholar 

  56. Baccarelli A, Ghosh S. Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2012;15(4):323–9. https://doi.org/10.1097/MCO.0b013e328354bf5c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hahn L, Kligerman S. Cardiac MRI evaluation of myocarditis. Curr Treat Opt Cardiovasc Med. 2019;21(11):69. https://doi.org/10.1007/s11936-019-0757-9.

    Article  Google Scholar 

  58. Shauer A, Gotsman I, Keren A, et al. Acute viral myocarditis: current concepts in diagnosis and treatment. Isr Med Assoc J. 2013;15(3):180–5.

    PubMed  Google Scholar 

  59. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis: diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12(11):670–80. https://doi.org/10.1038/nrcardio.2015.108.

    Article  PubMed  Google Scholar 

  60. Veronese G, Ammirati E, Cipriani M, Frigerio M. Fulminant myocarditis: characteristics, treatment, and outcomes. Anatol J Cardiol. 2018;19(4):279–86. https://doi.org/10.14744/AnatolJCardiol.2017.8170.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith ED, Lakdawala NK, Papoutsidakis N, Aubert G, Mazzanti A, McCanta AC, et al. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation. 2020;141(23):1872–84. https://doi.org/10.1161/CIRCULATIONAHA.119.044934. (Epub 2020 May 6. PMID: 32372669; PMCID: PMC7286080).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gräni C, Eichhorn C, Bière L, et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis [published correction appears in J Am Coll Cardiol. 2017 Nov 28;70(21):2736]. J Am Coll Cardiol. 2017;70(16):1964–76. https://doi.org/10.1016/j.jacc.2017.08.050.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ammirati E, Veronese G, Cipriani M, et al. Acute and fulminant myocarditis: a pragmatic clinical approach to diagnosis and treatment. Curr Cardiol Rep. 2018;20(11):114. https://doi.org/10.1007/s11886-018-1054-z.

    Article  PubMed  Google Scholar 

  64. Fischer K, Marggraf M, Stark AW, et al. Association of ECG parameters with late gadolinium enhancement and outcome in patients with clinical suspicion of acute or subacute myocarditis referred for CMR imaging. PLoS ONE. 2020;15(1): e0227134. https://doi.org/10.1371/journal.pone.0227134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bami K, Haddad T, Dick A, Dennie C, Dwivedi G. Noninvasive imaging in acute myocarditis. Curr Opin Cardiol. 2016;31(2):217–23. https://doi.org/10.1097/HCO.0000000000000265.

    Article  PubMed  Google Scholar 

  66. Felker GM, Boehmer JP, Hruban RH, et al. Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol. 2000;36(1):227–32. https://doi.org/10.1016/s0735-1097(00)00690-2.

    Article  CAS  PubMed  Google Scholar 

  67. Hsiao JF, Koshino Y, Bonnichsen CR, et al. Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging. 2013;29(2):275–84. https://doi.org/10.1007/s10554-012-0085-6.

    Article  PubMed  Google Scholar 

  68. Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by Speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69(8):1043–56. https://doi.org/10.1016/j.jacc.2016.12.012.

    Article  PubMed  Google Scholar 

  69. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87. https://doi.org/10.1016/j.jacc.2009.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kotanidis CP, Bazmpani MA, Haidich AB, Karvounis C, Antoniades C, Karamitsos TD. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2018;11(11):1583–90. https://doi.org/10.1016/j.jcmg.2017.12.008.

    Article  PubMed  Google Scholar 

  71. Gutberlet M, Lücke C. Original versus 2018 Lake Louise Criteria for acute myocarditis diagnosis: old versus new. Radiol Cardiothorac Imaging. 2019;1(3): e190150. https://doi.org/10.1148/ryct.2019190150.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wei S, Fu J, Chen L, Yu S. Performance of cardiac magnetic resonance imaging for diagnosis of myocarditis compared with endomyocardial biopsy: a meta-analysis. Med Sci Monit. 2017;23:3687–96. https://doi.org/10.12659/msm.902155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cundari G, Galea N, De Rubeis G, et al. Use of the new Lake Louise Criteria improves CMR detection of atypical forms of acute myocarditis. Int J Cardiovasc Imaging. 2021;37(4):1395–404. https://doi.org/10.1007/s10554-020-02097-9.

    Article  PubMed  Google Scholar 

  74. Zhang CD, Xu SL, Wang XY, Tao LY, Zhao W, Gao W. Prevalence of myocardial fibrosis in intensive endurance training athletes: a systematic review and meta-analysis. Front Cardiovasc Med. 2020;7: 585692. https://doi.org/10.3389/fcvm.2020.585692.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Androulakis E, Mouselimis D, Tsarouchas A, et al. The role of cardiovascular magnetic resonance imaging in the assessment of myocardial fibrosis in young and veteran athletes: insights from a meta-analysis. Front Cardiovasc Med. 2021;8: 784474. https://doi.org/10.3389/fcvm.2021.784474.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2362–71. https://doi.org/10.1016/j.jacc.2015.09.035.

    Article  PubMed  Google Scholar 

  77. Grün S, Schumm J, Greulich S, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012;59(18):1604–15. https://doi.org/10.1016/j.jacc.2012.01.007.

    Article  PubMed  Google Scholar 

  78. Eichhorn C, Greulich S, Bucciarelli-Ducci C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis. J Am Coll Cardiol Imaging. 2022;15(7):1325–38. https://doi.org/10.1016/j.jcmg.2021.11.017.

    Article  Google Scholar 

  79. Heymans S, Eriksson U, Lehtonen J, Cooper LT Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68(21):2348–64. https://doi.org/10.1016/j.jacc.2016.09.937.

    Article  PubMed  Google Scholar 

  80. Kiamanesh O, Toma M. The state of the heart biopsy: a clinical review. CJC Open. 2020;3(4):524–31. https://doi.org/10.1016/j.cjco.2020.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ammirati E, Buono A, Moroni F, et al. State-of-the-art of endomyocardial biopsy on acute myocarditis and chronic inflammatory cardiomyopathy. Curr Cardiol Rep. 2022;24(5):597–609. https://doi.org/10.1007/s11886-022-01680-x.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vaidya VR, Abudan AA, Vasudevan K, et al. The efficacy and safety of electroanatomic mapping-guided endomyocardial biopsy: a systematic review. J Interv Card Electrophysiol. 2018;53(1):63–71. https://doi.org/10.1007/s10840-018-0410-7.

    Article  PubMed  Google Scholar 

  83. Pelliccia A, Sharma S, Gati S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease [published correction appears in Eur Heart J. 2021 Feb 1;42(5):548–549]. Eur Heart J. 2021;42(1):17–96. https://doi.org/10.1093/eurheartj/ehaa605.

    Article  CAS  PubMed  Google Scholar 

  84. Casella M, Gasperetti A, Compagnucci P, et al. Different phases of disease in lymphocytic myocarditis: clinical and electrophysiological characteristics. JACC Clin Electrophysiol. 2023;9(3):314–26. https://doi.org/10.1016/j.jacep.2022.10.004.

    Article  PubMed  Google Scholar 

  85. Peretto G, Casella M, Merlo M, et al. Inflammation on endomyocardial biopsy predicts risk of MACE in undefined left ventricular arrhythmogenic cardiomyopathy. JACC Clin Electrophysiol. 2023;9(7 Pt 1):951–61. https://doi.org/10.1016/j.jacep.2022.10.032.

    Article  PubMed  Google Scholar 

  86. Dello Russo A, Compagnucci P, Casella M, et al. Ventricular arrhythmias in athletes: role of a comprehensive diagnostic workup. Heart Rhythm. 2022;19(1):90–9. https://doi.org/10.1016/j.hrthm.2021.09.013.

    Article  Google Scholar 

  87. Stiermaier T, Föhrenbach F, Klingel K, et al. Biventricular endomyocardial biopsy in patients with suspected myocarditis: feasibility, complication rate and additional diagnostic value. Int J Cardiol. 2017;230:364–70. https://doi.org/10.1016/j.ijcard.2016.12.103.

    Article  PubMed  Google Scholar 

  88. Si-Mohamed SA, Restier LM, Branchu A, et al. Diagnostic performance of extracellular volume quantified by dual-layer dual-energy CT for detection of acute myocarditis. J Clin Med. 2021;10(15):3286. https://doi.org/10.3390/jcm10153286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dambrin G, Laissy JP, Serfaty JM, Caussin C, Lancelin B, Paul JF. Diagnostic value of ECG-gated multidetector computed tomography in the early phase of suspected acute myocarditis: a preliminary comparative study with cardiac MRI. Eur Radiol. 2007;17(2):331–8. https://doi.org/10.1007/s00330-006-0391-2.

    Article  PubMed  Google Scholar 

  90. Kircher M, Lapa C. Novel noninvasive nuclear medicine imaging techniques for cardiac inflammation. Curr Cardiovasc Imaging Rep. 2017;10(2):6. https://doi.org/10.1007/s12410-017-9400-x.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Blagova OV, Osipova YV, Nedostup AV, Kogan EA, Sulimov VA. Klinicheskie, laboratornye i instrumental’nye kriterii miokardita, ustanovlennye v sopostavlenii s biopsiĭnym issledovaniem miokarda (algoritm neinvazivnoĭ diagnostiki) [Clinical, laboratory and instrumental criteria for myocarditis, established in comparison with myocardial biopsy: a non-invasive diagnostic algorithm]. Ter Arkh. 2017;89(9):30–40. https://doi.org/10.17116/terarkh201789930-40.

    Article  CAS  PubMed  Google Scholar 

  92. Martin ME, Moya-Mur JL, Casanova M, et al. Role of noninvasive antimyosin imaging in infants and children with clinically suspected myocarditis. J Nucl Med. 2004;45(3):429–37.

    CAS  PubMed  Google Scholar 

  93. Starekova J, Bluemke DA, Bradham WS, et al. Evaluation for myocarditis in competitive student athletes recovering from coronavirus disease 2019 with cardiac magnetic resonance imaging. JAMA Cardiol. 2021;6(8):945–50. https://doi.org/10.1001/jamacardio.2020.7444.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Petek BJ, Moulson N, Drezner JA, et al. Cardiovascular outcomes in collegiate athletes after SARS-CoV-2 infection: 1-year follow-up from the outcomes registry for cardiac conditions in athletes. Circulation. 2022;145(22):1690–2. https://doi.org/10.1161/CIRCULATIONAHA.121.058272.

    Article  CAS  PubMed  Google Scholar 

  95. Su JR, McNeil MM, Welsh KJ, et al. Myopericarditis after vaccination, vaccine adverse event reporting system (VAERS), 1990–2018. Vaccine. 2021;39(5):839–45. https://doi.org/10.1016/j.vaccine.2020.12.046.

    Article  CAS  PubMed  Google Scholar 

  96. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144(6):471–84. https://doi.org/10.1161/CIRCULATIONAHA.121.056135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Le Vu S, Bertrand M, Jabagi MJ, et al. Age and sex-specific risks of myocarditis and pericarditis following Covid-19 messenger RNA vaccines. Nat Commun. 2022;13(1):3633. https://doi.org/10.1038/s41467-022-31401-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Centers for Disease Control and Prevention. Interim clinical considerations for use of COVID-19 vaccines currently approved or authorized in the United States. October 11, 2022. Available from. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html. Accessed 18 Oct 2022.

  99. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109(10):1250–8. https://doi.org/10.1161/01.CIR.0000118493.13323.81.

    Article  PubMed  Google Scholar 

  100. Costanzo-Nordin MR, Reap EA, O’Connell JB, Robinson JA, Scanlon PJ. A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol. 1985;6(5):1078–82. https://doi.org/10.1016/s0735-1097(85)80312-0.

    Article  CAS  PubMed  Google Scholar 

  101. Hurwitz B, Issa O. Management and treatment of myocarditis in athletes. Curr Treat Opt Cardiovasc Med. 2020;22(12):65. https://doi.org/10.1007/s11936-020-00875-1.

    Article  Google Scholar 

  102. Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J. 2009;30(16):1995–2002. https://doi.org/10.1093/eurheartj/ehp249.

    Article  CAS  PubMed  Google Scholar 

  103. McKinney J, Connelly KA, Dorian P, et al. COVID-19-myocarditis and return to play: reflections and recommendations from a Canadian Working Group. Can J Cardiol. 2021;37(8):1165–74. https://doi.org/10.1016/j.cjca.2020.11.007.

    Article  PubMed  Google Scholar 

  104. Pelliccia A, Solberg EE, Papadakis M, et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2019;40(1):19–33. https://doi.org/10.1093/eurheartj/ehy730.

    Article  PubMed  Google Scholar 

  105. Schmidt T, Bjarnason-Wehrens B, Zacher J, Predel HG, Reiss N. Sports, myocarditis and COVID-19: diagnostics, prevention and return-to-play strategies. Int J Sports Med. 2022;43(13):1097–105. https://doi.org/10.1055/a-1810-5314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barone-Rochette G, Augier C, Rodière M, et al. Potentially simple score of late gadolinium enhancement cardiac MR in acute myocarditis outcome. J Magn Reson Imaging. 2014;40(6):1347–54. https://doi.org/10.1002/jmri.24504.

    Article  PubMed  Google Scholar 

  107. Bernhard B, Schnyder A, Garachemani D, et al. Prognostic value of right ventricular function in patients with suspected myocarditis undergoing cardiac magnetic resonance. JACC Cardiovasc Imaging. 2023;16(1):28–41. https://doi.org/10.1016/j.jcmg.2022.08.011.

    Article  PubMed  Google Scholar 

  108. Rauch B, Salzwedel A, Bjarnason-Wehrens B, et al. Cardiac rehabilitation in German speaking countries of Europe-evidence-based guidelines from Germany, Austria and Switzerland LLKardReha-DACH-Part 1. J Clin Med. 2021;10(10):2192. https://doi.org/10.3390/jcm10102192.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schwaab B, Kindermann I, Bjarnason-Wehrens B, et al. Viral myocarditis: a forbidden indication for cardiac rehabilitation? Eur J Prev Cardiol. 2022;29(15):2064–8. https://doi.org/10.1093/eurjpc/zwaa159.

    Article  PubMed  Google Scholar 

  110. Ambrosetti M, Abreu A, Corrà U, et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation: 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology [published online ahead of print, 2020 Apr 7]. Eur J Prev Cardiol. 2020;2047487320913379. https://doi.org/10.1177/2047487320913379.

  111. Piepoli MF, Conraads V, Corrà U, et al. Exercise training in heart failure: from theory to practice: a consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011;13(4):347–57. https://doi.org/10.1093/eurjhf/hfr017.

    Article  PubMed  Google Scholar 

  112. Dennert R, Crijns HJ, Heymans S. Acute viral myocarditis. Eur Heart J. 2008;29(17):2073–82. https://doi.org/10.1093/eurheartj/ehn296.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Al-Akchar M, Kiel J. Acute myocarditis. StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

    Google Scholar 

  114. Halle M, Binzenhöfer L, Mahrholdt H, Johannes Schindler M, Esefeld K, Tschöpe C. Myocarditis in athletes: a clinical perspective [published online ahead of print, 2020 Apr 17]. Eur J Prev Cardiol. 2020;2047487320909670. https://doi.org/10.1177/2047487320909670.

  115. Ammirati E, Cipriani M, Moro C, et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis: multicenter Lombardy Registry. Circulation. 2018;138(11):1088–99. https://doi.org/10.1161/CIRCULATIONAHA.118.035319.

    Article  PubMed  Google Scholar 

  116. Ammirati E, Frigerio M, Adler ED, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail. 2020;13(11): e007405. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007405.

    Article  PubMed  PubMed Central  Google Scholar 

  117. van Hattum JC, Spies JL, Verwijs SM, et al. Cardiac abnormalities in athletes after SARS-CoV-2 infection: a systematic review. BMJ Open Sport Exerc Med. 2021;7(4): e001164. https://doi.org/10.1136/bmjsem-2021-001164.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin J. Terry.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflicts of Interest

Kristin J. Terry, Dusty Narducci, Byron Moran, Patrick Chang, David Orlando, Bradford Bindas, Elizabeth Botto, Austin Retzlaff, Daniel Esan, and Eric Coris have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

Outline: DO, ED; literature review and writing: KT, DN, BM, PC, DO, BB, EB, AR, DE, EC; tables and figures: KT, EC; proof reading: KT, EC. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terry, K.J., Narducci, D., Moran, B. et al. Myocarditis in Athletes: Risk Factors and Relationship with Strenuous Exercise. Sports Med 54, 607–621 (2024). https://doi.org/10.1007/s40279-023-01969-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01969-z

Navigation