Skip to main content
Log in

Hamstrings Neuromuscular Function After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Hamstrings neuromuscular function is a crucial component of functional movement, and changes after anterior cruciate ligament (ACL) injury contribute to risk factors for secondary injury and long-term sequelae. To effectively treat muscular impairments, an accurate understanding of hamstrings neuromuscular function in patients with ACL reconstruction (ACLR) is needed.

Objective

A systematic review and meta-analysis were undertaken to describe and quantify hamstrings neuromuscular function in individuals with ACLR compared to controls.

Methods

We searched PubMed, Web of Science, SPORTDiscus, CINAHL, and EBSCOhost databases in October of 2020 for studies evaluating the difference between hamstrings electromyography (EMG) between individuals with ACLR and controls. Two independent reviewers assessed each paper for inclusion and quality. Means and standard deviations were extracted from each included study to allow random-effect size (ES) meta-analysis calculations for comparison of results.

Results

Thirty-four studies were included for final review. From these, 5 categories of neuromuscular outcomes were identified, and studies were grouped accordingly: (1) muscle activation levels (EMG amplitude), (2) co-activation, (3) onset timing, (4) electromechanical delay, and (5) time-to-peak activity. Moderate to strong evidence indicates that individuals with ACLR demonstrate higher hamstrings EMG amplitude (normalized to % maximum voluntary isometric contraction) and hamstrings-to-quadriceps co-activation during gait and stair ambulation compared to controls. In addition, there was moderate evidence of longer electromechanical delay during knee flexion and greater hamstrings-to-quadriceps co-activation during knee extension compared to controls.

Conclusions

Greater hamstrings EMG amplitude and co-activation during gait and ambulation tasks and longer electromechanical delay of the hamstrings in individuals with ACLR align with clinical impairments following ACLR and have implications for re-injury risk and long-term joint health, thus warranting attention in rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70. https://doi.org/10.1177/0363546514542796.

    Article  PubMed  Google Scholar 

  2. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543–52. https://doi.org/10.1136/bjsports-2013-093398.

    Article  PubMed  Google Scholar 

  3. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39(3):538–43. https://doi.org/10.1177/0363546510384798.

    Article  PubMed  Google Scholar 

  4. Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32. https://doi.org/10.1177/0363546516651845.

    Article  PubMed  Google Scholar 

  5. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76. https://doi.org/10.1177/0363546515621554.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harris KP, Driban JB, Sitler MR, Cattano NM, Balasubramanian E, Hootman JM. Tibiofemoral osteoarthritis after surgical or nonsurgical treatment of anterior cruciate ligament rupture: a systematic review. J Athl Train. 2017;52(6):507–17. https://doi.org/10.4085/1062-6050-49.3.89.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806–19. https://doi.org/10.4085/1062-6050-49.3.35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256–63. https://doi.org/10.4085/1062-6050-44.3.256.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blackburn T, Pietrosimone B, Goodwin JS, Johnston C, Spang JT. Co-activation during gait following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon). 2019;67:153–9. https://doi.org/10.1016/j.clinbiomech.2019.05.010.

    Article  Google Scholar 

  10. Pietrosimone B, Pfeiffer SJ, Harkey MS, Wallace K, Hunt C, Blackburn JT, et al. Quadriceps weakness associates with greater T1rho relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2632–42. https://doi.org/10.1007/s00167-018-5290-y.

    Article  PubMed  Google Scholar 

  11. Pietrosimone B, Seeley MK, Johnston C, Pfeiffer SJ, Spang JT, Blackburn JT. Walking ground reaction force post-ACL reconstruction: analysis of time and symptoms. Med Sci Sports Exerc. 2019;51(2):246–54. https://doi.org/10.1249/MSS.0000000000001776.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147–53. https://doi.org/10.1097/JES.0b013e3181aa6669.

    Article  PubMed  Google Scholar 

  13. MacWilliams BA, Wilson DR, DesJardins JD, Romero J, Chao EY. Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. J Orthop Res. 1999;17(6):817–22. https://doi.org/10.1002/jor.1100170605.

    Article  CAS  PubMed  Google Scholar 

  14. Palmieri-Smith RM, Strickland M, Lepley LK. Hamstring muscle activity after primary anterior cruciate ligament reconstruction-a protective mechanism in those who do not sustain a secondary injury? A preliminary study. Sports Health. 2019;11(4):316–23. https://doi.org/10.1177/1941738119852630.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71–9.

    PubMed  PubMed Central  Google Scholar 

  16. Basmajian JV, de Luca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins; 1985.

  17. NIOSH. Selected topics in surface electromyography for use in the occupational setting: expert perspectives 1999. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 91-1001999.

  18. Scheurer SA, Sherman DA, Glaviano NR, Ingersoll CD, Norte GE. Corticomotor function is associated with quadriceps rate of torque development in individuals with ACL surgery. Exp Brain Res. 2020;238(2):283–94. https://doi.org/10.1007/s00221-019-05713-w.

    Article  PubMed  Google Scholar 

  19. Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5):475–85. https://doi.org/10.4085/1062-6050-102-17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuenze C, Hertel J, Saliba S, Diduch DR, Weltman A, Hart JM. Clinical thresholds for quadriceps assessment after anterior cruciate ligament reconstruction. J Sport Rehabil. 2015;24(1):36–46. https://doi.org/10.1123/jsr.2013-0110.

    Article  PubMed  Google Scholar 

  21. Oiestad BE, Juhl CB, Eitzen I, Thorlund JB. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthr Cartil. 2015;23(2):171–7. https://doi.org/10.1016/j.joca.2014.10.008.

    Article  CAS  Google Scholar 

  22. Flaxman TE, Alkjaer T, Simonsen EB, Krogsgaard MR, Benoit DL. Predicting the functional roles of knee joint muscles from internal joint moments. Med Sci Sports Exerc. 2017;49(3):527–37. https://doi.org/10.1249/MSS.0000000000001125.

    Article  PubMed  Google Scholar 

  23. Flaxman TE, Smith AJ, Benoit DL. Sex-related differences in neuromuscular control: Implications for injury mechanisms or healthy stabilisation strategies? J Orthop Res. 2014;32(2):310–7. https://doi.org/10.1002/jor.22510.

    Article  PubMed  Google Scholar 

  24. Kim HJ, Lee JH, Ahn SE, Park MJ, Lee DH. Influence of anterior cruciate ligament tear on thigh muscle strength and hamstring-to-quadriceps ratio: a meta-analysis. PLoS ONE. 2016;11(1):e0146234. https://doi.org/10.1371/journal.pone.0146234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, et al. MRI-based assessment of lower-extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27(3):201–12. https://doi.org/10.1123/jsr.2016-0141.

    Article  PubMed  Google Scholar 

  26. Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663–72. https://doi.org/10.1007/s00421-015-3325-3.

    Article  PubMed  Google Scholar 

  27. Bencke J, Aagaard P, Zebis MK. Muscle activation during ACL injury risk movements in young female athletes: a narrative review. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.00445.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hootman JM, Driban JB, Sitler MR, Harris KP, Cattano NM. Reliability and validity of three quality rating instruments for systematic reviews of observational studies. Res Synth Methods. 2011;2(2):110–8. https://doi.org/10.1002/jrsm.41.

    Article  PubMed  Google Scholar 

  29. Open-Source. Engauge digitizer software. In: Mitchell M, Muftakhidinov B, Winchen T, van Schaik B, Wilms A, Kensington et al., editors.: GitHub; 2015. p. Windows 10.

  30. Briem K, Ragnarsdottir AM, Arnason SI, Sveinsson T. Altered medial versus lateral hamstring muscle activity during hop testing in female athletes 1–6 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):12–7. https://doi.org/10.1007/s00167-014-3333-6.

    Article  CAS  PubMed  Google Scholar 

  31. Ortiz A, Capo-Lugo CE, Venegas-Rios HL. Biomechanical deficiencies in women with semitendinosus-gracilis anterior cruciate ligament reconstruction during drop jumps. PM R. 2014;6(12):1097–106. https://doi.org/10.1016/j.pmrj.2014.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Telianidis S, Perraton L, Clark RA, Pua Y-H, Fortin K, Bryant AL. Diminished sub-maximal quadriceps force control in anterior cruciate ligament reconstructed patients is related to quadriceps and hamstring muscle dyskinesia. J Electromyogr Kinesiol. 2014;24(4):513–9.

    Article  Google Scholar 

  33. Rudroff T. Functional capability is enhanced with semitendinosus than patellar tendon ACL repair. Med Sci Sports Exerc. 2003;35(9):1486–92. https://doi.org/10.1249/01.MSS.0000084425.07852.7D.

    Article  PubMed  Google Scholar 

  34. Swanik CB, Lephart SM, Giraldo JL, Demont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train. 1999;34(2):121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wojtys EM, Huston LJ. Longitudinal effects of anterior cruciate ligament injury and patellar tendon autograft reconstruction on neuromuscular performance. Am J Sports Med. 2000;28(3):336–44. https://doi.org/10.1177/03635465000280030901.

    Article  CAS  PubMed  Google Scholar 

  36. Demont RG, Lephart SM, Giraldo JL, Swanik CB, Fu FH. Muscle preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train. 1999;34(2):115–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciccotti MG, Kerlan RK, Perry J, Pink M. An electromyographic analysis of the knee during functional activities. II. The anterior cruciate ligament-deficient and -reconstructed profiles. Am J Sports Med. 1994;22(5):651–8. https://doi.org/10.1177/036354659402200513.

    Article  CAS  PubMed  Google Scholar 

  38. Ortiz A, Olson S, Trudelle-Jackson E, Rosario M, Venegas HL. Landing mechanics during side hopping and crossover hopping maneuvers in noninjured women and women with anterior cruciate ligament reconstruction. PM R. 2011;3(1):13–20. https://doi.org/10.1016/j.pmrj.2010.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988.

  40. Higgins JPT, Green S, Cochrane C. Cochrane handbook for systematic reviews of interventions. Chichester, Hoboken: Wiley-Blackwell; 2008.

    Book  Google Scholar 

  41. Pamukoff DN, Pietrosimone BG, Ryan ED, Lee DR, Blackburn JT. Quadriceps function and hamstrings co-activation after anterior cruciate ligament reconstruction. J Athl Train. 2017;52(5):422–8. https://doi.org/10.4085/1062-6050-52.3.05.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jordan MJ, Aagaard P, Herzog W. Asymmetry and thigh muscle coactivity in fatigued anterior cruciate ligament-reconstructed elite skiers. Med Sci Sports Exerc. 2017;49(1):11–20. https://doi.org/10.1249/MSS.0000000000001076.

    Article  PubMed  Google Scholar 

  43. Bryant AL, Newton RU, Steele J. Successful feed-forward strategies following ACL injury and reconstruction. J Electromyogr Kinesiol. 2009;19(5):988–97. https://doi.org/10.1016/j.jelekin.2008.06.001.

    Article  PubMed  Google Scholar 

  44. Bryant AL, Pua YH, Clark RA. Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction. J Bone Jt Surg Am. 2009;91(6):1424–31. https://doi.org/10.2106/JBJS.H.01335.

    Article  Google Scholar 

  45. Kasovic M, Mejovsek M, Matkovic B, Jankovic S, Tudor A. Electromyographic analysis of the knee using fixed-activation threshold after anterior cruciate ligament reconstruction. Int Orthop. 2011;35(5):681–7. https://doi.org/10.1007/s00264-010-1050-4.

    Article  PubMed  Google Scholar 

  46. Rush JL, Norte GE, Lepley AS. Limb differences in hamstring muscle function and morphology after anterior cruciate ligament reconstruction. Phys Ther Sport. 2020;45:168–75. https://doi.org/10.1016/j.ptsp.2020.06.012.

    Article  PubMed  Google Scholar 

  47. Ristanis S, Tsepis E, Giotis D, Stergiou N, Cerulli G, Georgoulis AD. Electromechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(11):2179–86. https://doi.org/10.1177/0363546509340771.

    Article  PubMed  Google Scholar 

  48. Árnason S, Birnir B, Guðmundsson T, Guðnason G, Briem K. Medial hamstring muscle activation patterns are affected 1–6 years after ACL reconstruction using hamstring autograft. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):1024–9.

    Article  Google Scholar 

  49. Coats-Thomas MS, Miranda DL, Badger GJ, Fleming BC. Effects of ACL reconstruction surgery on muscle activity of the lower limb during a jump-cut maneuver in males and females. J Orthop Res. 2013;31(12):1890–6. https://doi.org/10.1002/jor.22470.

    Article  PubMed  Google Scholar 

  50. Cordeiro N, Cortes N, Fernandes O, Diniz A, Pezarat-Correia P. Dynamic knee stability and ballistic knee movement after ACL reconstruction: an application on instep soccer kick. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1100–6. https://doi.org/10.1007/s00167-014-2894-8.

    Article  PubMed  Google Scholar 

  51. Freddolini M, Battaglioli A, Chiechi F, Placella G, Georgoulis A, Cerulli G, et al. Electromechanical delay of the knee flexor muscles after anterior cruciate ligament reconstruction using semitendinosus tendon. Sports Biomech. 2015;14(4):384–93. https://doi.org/10.1080/14763141.2015.1086425.

    Article  PubMed  Google Scholar 

  52. Hall M, Stevermer CA, Gillette JC. Muscle activity amplitudes and co-contraction during stair ambulation following anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2015;25(2):298–304. https://doi.org/10.1016/j.jelekin.2015.01.007.

    Article  PubMed  Google Scholar 

  53. Harput G, Howard JS, Mattacola C. Comparison of muscle activation levels between healthy individuals and persons who have undergone anterior cruciate ligament reconstruction during different phases of weight-bearing exercises. J Orthop Sports Phys Ther. 2016;46(11):984–92. https://doi.org/10.2519/jospt.2016.5896.

    Article  PubMed  Google Scholar 

  54. Heller BM, Pincivero DM. The effects of ACL injury on lower extremity activation during closed kinetic chain exercise. J Sports Med Phys Fit. 2003;43(2):180–8.

    CAS  Google Scholar 

  55. Perraton L, Clark R, Crossley K, Pua YH, Whitehead T, Morris H, et al. Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1424–31. https://doi.org/10.1007/s00167-015-3937-5.

    Article  PubMed  Google Scholar 

  56. Pincheira PA, Silvestre R, Armijo-Olivo S, Guzman-Venegas R. Ankle perturbation generates bilateral alteration of knee muscle onset times after unilateral anterior cruciate ligament reconstruction. PeerJ. 2018;6(7):e5310. https://doi.org/10.7717/peerj.5310.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Flaxman TE, Alkjaer T, Smale KB, Simonsen EB, Krogsgaard MR, Benoit DL. Differences in EMG-moment relationships between ACL-injured and uninjured adults during a weight-bearing multidirectional force control task. J Orthop Res. 2019;37(1):113–23. https://doi.org/10.1002/jor.24145.

    Article  PubMed  Google Scholar 

  58. Lepley LK, Thomas AC, McLean SG, Palmieri-Smith RM. Fatigue’s lack of effect on thigh-muscle activity in anterior cruciate ligament-reconstructed patients during a dynamic-landing task. J Sport Rehabil. 2013;22(2):83–92. https://doi.org/10.1123/jsr.22.2.83.

    Article  PubMed  Google Scholar 

  59. San Martín-Mohr C, Cristi-Sánchez I, Pincheira PA, Reyes A, Berral FJ, Oyarzo C. Knee sensorimotor control following anterior cruciate ligament reconstruction: a comparison between reconstruction techniques. PLoS ONE. 2018;13(11):e0205658. https://doi.org/10.1371/journal.pone.0205658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smeets A, Verschueren S, Staes F, Vandenneucker H, Claes S, Vanrenterghem J. Athletes with an ACL reconstruction show a different neuromuscular response to environmental challenges compared to uninjured athletes. Gait Posture. 2021;83:44–51. https://doi.org/10.1016/j.gaitpost.2020.09.032.

    Article  PubMed  Google Scholar 

  61. Vairo GL, Myers JB, Sell TC, Fu FH, Harner CD, Lephart SM. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(1):2–14. https://doi.org/10.1007/s00167-007-0427-4.

    Article  PubMed  Google Scholar 

  62. Pereira HM, Nowotny AH, Santos AB, Cardoso JR. Electromyographic activity of knee stabilizer muscles during six different balance board stimuli after anterior cruciate ligament surgery. Electromyogr Clin Neurophysiol. 2009;49(2–3):117–24.

    CAS  PubMed  Google Scholar 

  63. Mantashloo Z, Letafatkar A, Moradi M. Vertical ground reaction force and knee muscle activation asymmetries in patients with ACL reconstruction compared to healthy individuals. Knee Surgery Sports Traumatol Arthrosc. 2020;28(6):2009–14. https://doi.org/10.1007/s00167-019-05743-5.

    Article  Google Scholar 

  64. Cristiani R, Mikkelsen C, Forssblad M, Engström B, Stålman A. Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3461–70. https://doi.org/10.1007/s00167-019-05396-4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Knutson LM, Soderberg GL, Ballantyne BT, Clarke WR. A study of various normalization procedures for within day electromyographic data. J Electromyogr Kinesiol. 1994;4(1):47–59. https://doi.org/10.1016/1050-6411(94)90026-4.

    Article  CAS  PubMed  Google Scholar 

  66. Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Jt Surg Am. 2008;90(4):815–23. https://doi.org/10.2106/JBJS.F.01352.

    Article  Google Scholar 

  67. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946–51. https://doi.org/10.1136/bjsports-2015-095908.

    Article  PubMed  Google Scholar 

  68. Khandha A, Manal K, Wellsandt E, Capin J, Snyder-Mackler L, Buchanan TS. Gait mechanics in those with/without medial compartment knee osteoarthritis 5 years after anterior cruciate ligament reconstruction. J Orthop Res. 2017;35(3):625–33. https://doi.org/10.1002/jor.23261.

    Article  PubMed  Google Scholar 

  69. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlén L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med. 2014;42(5):1049–57. https://doi.org/10.1177/0363546514526139.

    Article  PubMed  Google Scholar 

  70. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve. 2015;51(3):327–32. https://doi.org/10.1002/mus.24463.

    Article  PubMed  Google Scholar 

  71. Nyland J, Gamble C, Franklin T, Caborn DNM. Permanent knee sensorimotor system changes following ACL injury and surgery. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1461–74. https://doi.org/10.1007/s00167-017-4432-y.

    Article  PubMed  Google Scholar 

  72. Weinhandl JT, Earl-Boehm JE, Ebersole KT, Huddleston WE, Armstrong BS, O’Connor KM. Anticipatory effects on anterior cruciate ligament loading during sidestep cutting. Clin Biomech (Bristol, Avon). 2013;28(6):655–63. https://doi.org/10.1016/j.clinbiomech.2013.06.001.

    Article  Google Scholar 

  73. van Tulder M, Furlan A, Bombardier C, Bouter L, Editorial Board of the Cochrane Collaboration Back Review G. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976). 2003;28(12):1290–9. https://doi.org/10.1097/01.BRS.0000065484.95996.AF.

    Article  Google Scholar 

  74. Kuenze C, Pietrosimone B, Lisee C, Rutherford M, Birchmeier T, Lepley A, et al. Demographic and surgical factors affect quadriceps strength after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(3):921–30. https://doi.org/10.1007/s00167-018-5215-9.

    Article  PubMed  Google Scholar 

  75. Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD. The influence of graft choice on isokinetic muscle strength 4–24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):768–80. https://doi.org/10.1007/s00167-010-1357-0.

    Article  PubMed  Google Scholar 

  76. Harput G, Soylu AR, Ertan H, Ergun N, Mattacola CG. Effect of gender on the quadriceps-to-hamstrings coactivation ratio during different exercises. J Sport Rehabil. 2014;23(1):36–43. https://doi.org/10.1123/jsr.2012-0120.

    Article  PubMed  Google Scholar 

  77. Blackburn JT, Bell DR, Norcross MF, Hudson JD, Engstrom LA. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol. 2009;19(5):e362–9. https://doi.org/10.1016/j.jelekin.2008.08.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all participants who contributed to the original research reviewed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sherman.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

David Sherman, Neal Glaviano and Grant Norte declare that they have no conflicts of interest relevant to the content of this review.

Standards of reporting

PRISMA.

Ethics approval

This is a systematic review. The University of Toledo Institutional Review Board for Biomedical Research has confirmed that no ethical approval is required.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

All authors (DAS, NRG, and GEN) have contributed equally and demonstrated significant involvement in the planning and carrying out of this review and manuscript. Material preparation and data extraction were performed by DAS. Methodological quality review was performed by DAS and NRG. Data analysis was performed by DAS. The first draft of the manuscript was written by DAS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, D.A., Glaviano, N.R. & Norte, G.E. Hamstrings Neuromuscular Function After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Med 51, 1751–1769 (2021). https://doi.org/10.1007/s40279-021-01433-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01433-w

Navigation