Skip to main content

Advertisement

Log in

Demographic and surgical factors affect quadriceps strength after ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate the effects of graft source, time since surgery, age, and sex on unilateral and symmetry-based measures of knee extension strength among individuals with ACL reconstruction (ACLR).

Methods

Three hundred and eight individuals aged 13–40 years old with primary, unilateral ACLR in the last 60 months were enrolled in this multi-site clinical measurement study. Participants completed bilateral knee extension maximal voluntary isometric contraction (MVIC) torque assessments which were normalized to body mass (Nm/kg) and limb symmetry indices (LSI) were calculated. The effects of graft source (patellar tendon autograft; hamstring tendon autograft), time since surgery (≤ 12 months; >12 mo.), age (≤ 18 years; >18 years), and sex were evaluated using separate ANCOVAs.

Results

A significant interaction was present between time since surgery and graft source for LSI (P = 0.01) as participants with patellar tendon autografts ≤ 12 months post-ACLR experienced the greatest asymmetry (LSI = 69.2 ± 24.5%). Significant interactions were present between time since surgery and sex for involved limb (P = 0.01) and uninvolved limb MVIC torque (P = 0.05) with females ≤ 12 months post-ACLR being weakest (involved MVIC = 1.81 ± 0.70 N m/kg; uninvolved MVIC = 2.40 ± 0.68 N m/kg). Participants ≤ 18-year-old displayed weaker involved limb (P < 0.001) and contralateral limb (P < 0.001) MVIC torque as compared to participants > 18-year-old during the first year after ACLR.

Conclusions

Graft source, sex, age, and time since surgery effect quadriceps strength and symmetry after ACLR. Surgical and demographic factors should be considered when developing treatment approaches to optimize quadriceps function prior to re-integration into pre-injury levels of physical activity.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACLR:

Anterior cruciate ligament reconstruction

BTB:

Bone–patellar tendon–bone autograft

HAS:

Hamstring tendon autograft

LSI:

Limb symmetry index

MVIC:

Maximum voluntary isometric contraction

References

  1. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42:601–614

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ageberg E, Forssblad M, Herbertsson P, Roos EM (2010) Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med 38:1334–1342

    Article  PubMed  Google Scholar 

  3. Angelozzi M, Madama M, Corsica C, Calvisi V, Properzi G, McCaw ST et al (2012) Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42:772–780

    Article  PubMed  Google Scholar 

  4. Ardern CL (2015) Anterior cruciate ligament reconstruction-not exactly a one-way ticket back to the preinjury level: a review of contextual factors affecting return to sport after surgery. Sports Health 7:224–230

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ardern CL, Taylor NF, Feller JA, Webster KE (2014) Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med 48:1543–1552

    Article  PubMed  Google Scholar 

  6. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39:538–543

    Article  PubMed  Google Scholar 

  7. Chee MY, Chen Y, Pearce CJ, Murphy DP, Krishna L, Hui JH et al (2017) Outcome of patellar tendon versus 4-strand hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of prospective randomized trials. Arthroscopy 33:450–463

    Article  PubMed  Google Scholar 

  8. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    Article  PubMed  Google Scholar 

  9. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  10. Gokeler A, Welling W, Benjaminse A, Lemmink K, Seil R, Zaffagnini S (2017) A critical analysis of limb symmetry indices of hop tests in athletes after anterior cruciate ligament reconstruction: a case control study. Orthop Traumatol Surg Res 103:947–951

    Article  CAS  PubMed  Google Scholar 

  11. Grant JA (2013) Updating recommendations for rehabilitation after ACL reconstruction: a review. Clin J Sport Med 23:501–502

    Article  PubMed  Google Scholar 

  12. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50:804–808

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2007) Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech (Bristol Avon) 22:543–550

    Article  Google Scholar 

  14. Higgins LD, Taylor MK, Park D, Ghodadra N, Marchant M, Pietrobon R et al (2007) Reliability and validity of the International Knee Documentation Committee (IKDC) subjective knee form. Jt Bone Spine 74:594–599

    Article  Google Scholar 

  15. Irrgang J, Anderson A, Boland A, Harner C, Kurosaka M, Neyret P et al (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600

    Article  CAS  PubMed  Google Scholar 

  16. Ithurburn MP, Altenburger AR, Thomas S, Hewett TE, Paterno MV, Schmitt LC (2017) Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-017-4678-4

    Article  PubMed  Google Scholar 

  17. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC (2017) Young athletes after anterior cruciate ligament reconstruction with single-leg landing asymmetries at the time of return to sport demonstrate decreased knee function 2 years later. Am J Sports Med 45:2604–2613

    Article  PubMed  Google Scholar 

  18. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC (2015) Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med 43:2727–2737

    Article  PubMed  Google Scholar 

  19. Kim DK, Park WH (2015) Sex differences in knee strength deficit 1 year after anterior cruciate ligament reconstruction. J Phys Ther Sci 27:3847–3849

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuenze C, Eltouhky M, Thomas A, Sutherlin M, Hart J (2016) Validity of torque-data collection at multiple sites: a framework for collaboration on clinical-outcomes research in sports medicine. J Sport Rehabil 25:173–180

    Article  PubMed  Google Scholar 

  21. Kuenze C, Hertel J, Saliba S, Diduch DR, Weltman A, Hart JM (2015) Clinical thresholds for quadriceps assessment after anterior cruciate ligament reconstruction. J Sport Rehabil 24:36–46

    Article  PubMed  Google Scholar 

  22. Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM (2015) Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train 50:303–312

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16:1009–1016

    Article  PubMed  Google Scholar 

  24. Lepley LK (2015) Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health 7:231–238

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leys T, Salmon L, Waller A, Linklater J, Pinczewski L (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40:595–605

    Article  PubMed  Google Scholar 

  26. Luc BA, Harkey MH, Arguelles GD, Blackburn JT, Ryan ED, Pietrosimone B (2016) Measuring voluntary quadriceps activation: Effect of visual feedback and stimulus delivery. J Electromyogr Kinesiol 26:73–81

    Article  PubMed  Google Scholar 

  27. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370

    Article  PubMed  Google Scholar 

  28. Martin-Alguacil JL, Arroyo-Morales M, Martin-Gomez JL, Monje-Cabrera IM, Abellan-Guillen JF, Esparza-Ros F et al (2018) Strength recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus hamstring tendon autografts in soccer players: a randomized controlled trial. Knee 25:704–714

    Article  PubMed  Google Scholar 

  29. Nagelli CV, Hewett TE (2017) Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med 47:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22:116–121

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42:1567–1573

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patras K, Zampeli F, Ristanis S, Tsepis E, Ziogas G, Stergiou N et al (2012) Hamstring-dominant strategy of the bone-patellar tendon-bone graft anterior cruciate ligament-reconstructed leg versus quadriceps-dominant strategy of the contralateral intact leg during high-intensity exercise in male athletes. Arthroscopy 28:1262–1270

    Article  PubMed  Google Scholar 

  33. Pietrosimone B, Lepley AS, Harkey MS, Luc-Harkey BA, Blackburn JT, Gribble PA et al (2016) Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc 48:1671–1677

    Article  PubMed  Google Scholar 

  34. Prentice HA, Lind M, Mouton C, Persson A, Magnusson H, Gabr A et al (2018) Patient demographic and surgical characteristics in anterior cruciate ligament reconstruction: a description of registries from six countries. Br J Sports Med 52:716–722

    Article  PubMed  Google Scholar 

  35. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284

    Article  PubMed  Google Scholar 

  36. Roberts D, Kuenze C, Saliba S, Hart JM (2012) Accessory muscle activation during the superimposed burst technique. J Electromyogr Kinesiol 22:540–545

    Article  PubMed  Google Scholar 

  37. Tan SH, Lau BP, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions: a systematic review and meta-analysis. Am J Sports Med 44:242–254

    Article  PubMed  Google Scholar 

  38. Toole AR, Ithurburn MP, Rauh MJ, Hewett TE, Paterno MV, Schmitt LC (2017) Young athletes cleared for sports participation after anterior cruciate ligament reconstruction: how many actually meet recommended return-to-sport criterion cutoffs? J Orthop Sports Phys Ther 47:825–833

    PubMed  Google Scholar 

  39. Toonstra J, Mattacola CG (2013) Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil 22

  40. Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44:2827–2832

    Article  PubMed  Google Scholar 

Download references

Funding

Research reported in this publication was patiently supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (1R03AR066840-01A1), North Carolina Translational and Clinical Sciences (TraCS) Institute and National Athletic Trainers Association Research and Education Foundation (14NewInv001 and 1617DGP007). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, NC TraCS Institute or the National Athletic Trainers Association Research and Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

CK, BP, and JH contributed to the study design, collection of demographic and strength data, and statistical analysis. CL, MR, TB, and AL contributed to the collection and preparation of the demographic and strength data included in the final analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher Kuenze.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical approval

This research was approved by the University of North Carolina at Chapel Hill (IRB# 13-2385 and 13- 3228), University of Virginia (IRB# 17-399), and Michigan State University (IRB# 17-1372) Institutional Review Boards for Human Subjects or Health Science Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuenze, C., Pietrosimone, B., Lisee, C. et al. Demographic and surgical factors affect quadriceps strength after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27, 921–930 (2019). https://doi.org/10.1007/s00167-018-5215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5215-9

Keywords

Navigation