European Commission. Gender equality in sport: proposal for strategic actions 2014–2020. https://ec.europa.eu/sport/news/2014/gender_equality_sporten. Accessed 3 Dec 2019.
International Working Group on Women and Sport, Women Sport International. Women, gender equality and sport. New York (NY), 2007. http://www.un.org/womenwatch/daw/public/Women%20and%20Sport.pdf. Accessed 3 Dec 2019.
Fink JS. Female athletes, women’s sport, and the sport media commercial complex: have we really “come a long way, baby”? Sport Manage. Rev. 2015;18(3):331–42. https://doi.org/10.1016/j.smr.2014.05.001.
Article
Google Scholar
Forsyth J, Roberts CM. Introduction to the exercising female: science and its application. In: Forsyth J, Roberts CM, editors. the exercising female. London: Routledge; 2018. p. 1–6.
Google Scholar
The International Olympic Committee. Promotion of women in sport through time. https://www.olympic.org/women-in-sport/background. Accessed 3 Dec 2019.
Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in Sports and Exercise Medicine research? Euro J Sport Sci. 2014;14(8):847–51. https://doi.org/10.1080/17461391.2014.911354.
Article
Google Scholar
Emmonds S, Heyward O, Jones B. The challenge of applying and undertaking research in female sport. Sports Med-Open. 2019;5(1):51. https://doi.org/10.1186/s40798-019-0224-x.
Article
PubMed
PubMed Central
Google Scholar
Pitchers G, Elliot-Sale K. Considerations for coaches training female athletes. Prof Strength Cond. 2019;55:19–30.
Google Scholar
Sheel AW. Sex differences in the physiology of exercise: an integrative perspective. Exp Physiol. 2016;101(2):211–2. https://doi.org/10.1113/EP085371.
Article
PubMed
PubMed Central
Google Scholar
Cable NT, Elliott KJ. The influence of reproductive hormones on muscle strength. Biol Rhythm Res. 2004;35(3):235–44. https://doi.org/10.1080/09291010412331335788.
CAS
Article
Google Scholar
Knowles OE, Aisbett B, Main LC, Drinkwater EJ, Orellana L, Lamon S. Resistance training and skeletal muscle protein metabolism in eumenorrheic females: implications for researchers and practitioners. Sports Med. 2019;12:1–4. https://doi.org/10.1007/s40279-019-01132-7.
Article
Google Scholar
Davis HC, Hackney AC. The hypothalamic–pituitary–ovarian axis and oral contraceptives: regulation and function. In: Hackney AC, editor. Sex hormones, exercise and women: scientific and clinical aspects. London: Springer; 2017. p. 1–17.
Google Scholar
Landgren BM, Unden AL, Diczfalusy E. Hormonal profile of the cycle in 68 normally menstruating women. Acta Endocrinol. 1980;94(1):89–98.
CAS
Google Scholar
Owen JA. Physiology of the menstrual cycle. Am J Clin Nutr. 1975;28(4):333–8.
CAS
PubMed
PubMed Central
Google Scholar
Janse de Jonge XA. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833–51. https://doi.org/10.2165/00007256-200333110-00004.
Article
PubMed
PubMed Central
Google Scholar
Mihm M, Gangooly S, Muttukrishna S. The normal menstrual cycle in women. Anim Reprod Sci. 2011;124(3–4):229–36. https://doi.org/10.1016/j.anireprosci.2010.08.030.
CAS
Article
PubMed
PubMed Central
Google Scholar
de Jonge XAJ, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610–7. https://doi.org/10.1249/MSS.0000000000002073.
Article
Google Scholar
Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40.
CAS
PubMed
PubMed Central
Google Scholar
Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Simoes DC, Thomas K, et al. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol. 2019;126(6):1701–12. https://doi.org/10.1152/japplphysiol.01041.2018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Constantini NW, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med. 2005;24(2):51–82. https://doi.org/10.1016/j.csm.2005.01.003.
Article
Google Scholar
Frankovich RJ, Lebrun CM. Menstrual cycle, contraception, and performance. Clin Sports Med. 2000;19(2):251–71.
CAS
PubMed
PubMed Central
Google Scholar
Lebrun CM. The effect of the phase of the menstrual cycle and the birth control pill on athletic performance. Clin Sports Med. 1994;13(2):419–41.
CAS
PubMed
PubMed Central
Google Scholar
Lebrun CM, Joyce SM, Constantini NW. Effects of female reproductive hormones on sports performance. Endocrinology of physical activity and sport. Totowa: Humana Press; 2013. p. 281–322.
Google Scholar
Baltgalvis KA, Greising SM, Warren GL, Lowe DA. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One. 2010;5(4):101–64. https://doi.org/10.1371/journal.pone.0010164.
CAS
Article
Google Scholar
Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogens’ beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38(2):61–7. https://doi.org/10.1097/JES.0b013e3181d496bc.
Article
PubMed
PubMed Central
Google Scholar
Isacco L, Boisseau N. Sex hormones and substrate metabolism during endurance exercise. In: Hackney AC, editor. Sex hormones, exercise and women: scientific and clinical aspects. London: Springer; 2017. p. 35–58.
Google Scholar
Campbell SE, Angus DJ, Febbraio MA. Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am J Physiol Endocrinol Metab. 2001;281(4):817–25. https://doi.org/10.1152/ajpendo.2001.281.4.E817.
Article
Google Scholar
Pallavi LC, SoUza UJ, Shivaprakash G. Assessment of musculoskeletal strength and levels of fatigue during different phases of menstrual cycle in young adults. J Clin Diagn Res. 2017;11(2):11–3.
Google Scholar
Tenan MS, Hackney AC, Griffin L. Maximal force and tremor changes across the menstrual cycle. Eur J Appl Physiol. 2016;116(1):153–60. https://doi.org/10.1007/s00421-015-3258-x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bambaeichi E, Reilly T, Cable NT, Giacomoni M. The isolated and combined effects of menstrual cycle phase and time-of-day on muscle strength of eumenorrheic females. Chronobiol Int. 2004;21(4–5):645–60. https://doi.org/10.1081/CBI-120039206.
CAS
Article
Google Scholar
Ekenros L, Hirschberg AL, Heijne A, Fridén C. Oral contraceptives do not affect muscle strength and hop performance in active women. Clin J Sport Med. 2013;23(3):202–7. https://doi.org/10.1097/JSM.0b013e3182625a51.
Article
Google Scholar
Oosthuyse T, Bosch AN, Jackson S. Cycling time trial performance during different phases of the menstrual cycle. Euro J Appl Physiol. 2005;94(3):268–76. https://doi.org/10.1007/s00421-005-1324-5.
Article
Google Scholar
Casazza GA, Suh SH, Miller BF, Navazio FM, Brooks GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698–702. https://doi.org/10.1152/japplphysiol.00622.2002.
CAS
Article
Google Scholar
Dibrezzo RO, Fort IL, Brown B. Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Ther. 1988;10(4):113–6.
CAS
Google Scholar
Elliott KJ, Cable NT, Reilly T, Diver MJ. Effect of menstrual cycle phase on the concentration of bioavailable 17-β oestradiol and testosterone and muscle strength. Clin Sci. 2003;105(6):663–9. https://doi.org/10.1042/CS20020360.
CAS
Article
Google Scholar
de Jonge XJ, Boot CR, Thom JM, Ruell PA, Thompson MW. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol. 2001;530(1):161–6. https://doi.org/10.1111/j.1469-7793.2001.0161m.x.
Article
Google Scholar
de Jonge XJ, Thompson MW, Chuter VH, Silk LN, Thom JM. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med Sci Sports Exerc. 2012;44(11):2190–8. https://doi.org/10.1249/mss.0b013e3182656f13.
Article
Google Scholar
McLay RT, Thomson CD, Williams SM, Rehrer NJ. Carbohydrate loading and female endurance athletes: effect of menstrual-cycle phase. Int J Sport Nutr Exerc Metab. 2007;17(2):189–205. https://doi.org/10.1123/ijsnem.17.2.189.
CAS
Article
PubMed
PubMed Central
Google Scholar
Vaiksaar S, Jürimäe J, Mäestu J, Purge P, Kalytka S, Shakhlina L, et al. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res. 2011;25(6):1571–8. https://doi.org/10.1519/JSC.0b013e3181df7fd2.
Article
PubMed
PubMed Central
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
Article
PubMed
PubMed Central
Google Scholar
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.
Article
PubMed
PubMed Central
Google Scholar
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84. https://doi.org/10.1136/jech.52.6.377.
CAS
Article
PubMed
PubMed Central
Google Scholar
Morris S. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods. 2008;11(2):364–86. https://doi.org/10.1177/1094428106291059.
Article
Google Scholar
Kruschke JK, Liddell TM. The Bayesian New Statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev. 2018;25(1):178–206.
PubMed
PubMed Central
Google Scholar
Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–69. https://doi.org/10.1136/bjsports-2016-096396.
Article
PubMed
PubMed Central
Google Scholar
Fernández-Castilla B, Declercq L, Jamshidi L, Beretvas SN, Onghena P, Van den Noortgate W. Detecting selection bias in meta-analyses with multiple outcomes: a simulation study. J Exp Educ. 2019;29:1–20. https://doi.org/10.1080/00220973.2019.1582470.
Article
Google Scholar
Cohen J. Statistical power analysis for the social sciences. 2nd ed. New Jersey: Lawrence Erlbaum Associates; 1988.
Google Scholar
Greco T, Biondi-Zoccai G, Saleh O, Pasin L, Cabrini L, Zangrillo A, et al. The attractiveness of network meta-analysis: a comprehensive systematic and narrative review. Heart Lung Vessel. 2015;7(2):133.
PubMed
PubMed Central
Google Scholar
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71. https://doi.org/10.1016/j.jclinepi.2010.03.016.
Article
PubMed
PubMed Central
Google Scholar
Rücker G, Schwarzer G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol. 2015;15(1):58. https://doi.org/10.1186/s12874-015-0060-8.
Article
PubMed
PubMed Central
Google Scholar
Sturtz S, Ligges U, Gelman AE. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw. 2005. https://doi.org/10.7916/D80C55HH.
Article
Google Scholar
Bürkner PC. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1–28.
Google Scholar
Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. New York: Chapman and Hall/CRC; 2013.
Google Scholar
Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, et al. Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatolo Arthrosc. 2007;15(7):901–7. https://doi.org/10.1007/s00167-007-0302-3.
Article
Google Scholar
Bailey SP, Zacher CM, Mittleman KD. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol. 2000;88(2):690–7. https://doi.org/10.1152/jappl.2000.88.2.690.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bandyopadhyay A, Dalui R. Endurance capacity and cardiorespiratory responses in sedentary females during different phases of menstrual cycle. Kathmandu Univ Med J. 2012;10(4):25–9. https://doi.org/10.3126/kumj.v10i4.10990.
CAS
Article
Google Scholar
Beidleman BA, Rock PB, Muza SR, Fulco CS, Forte VA Jr, Cymerman A. Exercise V̇e and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol. 1999;86(5):1519–26. https://doi.org/10.1152/jappl.1999.86.5.1519.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bell DR, Blackburn JT, Ondrak KS, Hackney AC, Hudson JD, Norcross MF, et al. The effects of oral contraceptive use on muscle stiffness across the menstrual cycle. Clin J Sport Med. 2011;21(6):467–73. https://doi.org/10.1097/JSM.0b013e318230f50a.
Article
PubMed
PubMed Central
Google Scholar
Bemben DA, Salm PC, Salm AJ. Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fitness. 1995;35(4):257–62.
CAS
PubMed
PubMed Central
Google Scholar
Birch KM, Reilly T. Manual handling performance: the effects of menstrual cycle phase. Ergonomics. 1999;42(10):1317–32.
CAS
PubMed
PubMed Central
Google Scholar
Birch K, Reilly T. The diurnal rhythm in isometric muscular performance differs with eumenorrheic menstrual cycle phase. Chronobiol Int. 2002;19(4):731–42. https://doi.org/10.1081/CBI-120006083.
CAS
Article
PubMed
PubMed Central
Google Scholar
Burrows M, Bird SR. Velocity at \(\dot{V}\)O2max and peak treadmill velocity are not influenced within or across the phases of the menstrual cycle. Euro J Appl Physiol. 2005;93(5–6):575–80. https://doi.org/10.1007/s00421-004-1272-5.
CAS
Article
Google Scholar
Bushman B, Masterson G, Nelsen J. Anaerobic power performance and the menstrual cycle: eumenorrheic and oral contraceptive users. J Sports Med Phys Fitness. 2006;46(1):132.
CAS
PubMed
PubMed Central
Google Scholar
Davies BN, Elford JC, Jamieson KF. Variations in performance in simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness. 1991;31(4):532–7.
CAS
PubMed
PubMed Central
Google Scholar
Dean TM, Perreault L, Mazzeo RS, Horton TJ. No effect of menstrual cycle phase on lactate threshold. J Appl Physiol. 2003;95(6):2537–43. https://doi.org/10.1152/japplphysiol.00672.2003.
Article
PubMed
PubMed Central
Google Scholar
de Bruyn-Prevost P, Masset C, Sturbois X. Physiological response from 18-25 years women to aerobic and anaerobic physical fitness tests at different periods during the menstrual cycle. J Sports Med. 1984;24(2):144–8.
Google Scholar
de Souza MS, Maguire MS, Rubin KR, Maresh CM. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc. 1990;22(5):575–80. https://doi.org/10.1249/00005768-199010000-00006.
Article
PubMed
PubMed Central
Google Scholar
Dombovy ML, Bonekat HW, Williams TJ, Staats BA. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc. 1987;19(2):111–7.
CAS
PubMed
PubMed Central
Google Scholar
Doolittle TL, Engebretsen J. Performance variations during the menstrual cycle. J Sports Med Phys Fitness. 1972;12(1):54.
CAS
PubMed
PubMed Central
Google Scholar
Drake SM, Evetovich T, Eschbach C, Webster M. A pilot study on the effect of oral contraceptives on electromyography and mechanomyography during isometric muscle actions. J Electromyogr Kinesiol. 2003;13(3):297–301. https://doi.org/10.1016/S1050-6411(03)00024-5.
CAS
Article
Google Scholar
Elliott KJ, Cable NT, Reilly T. Does oral contraceptive use affect maximum force production in women? Br J Sports Med. 2005;39(1):15–9. https://doi.org/10.1136/bjsm.2003.009886.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ettinger SM, Silber DH, Gray KS, Smith MB, Yang QX, Kunselman AR, et al. Effects of the ovarian cycle on sympathetic neural outflow during static exercise. J Appl Physiol. 1998;85(6):2075–81.
CAS
Google Scholar
Frandsen J, Pistoljevic N, Quesada JP, Amaro-Gahete FJ, Ritz C, Larsen S, et al. Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. J Appl Physiol. 2020;128(3):681–7. https://doi.org/10.1152/japplphysiol.00774.2019.
CAS
Article
Google Scholar
Fridén C, Hirschberg AL, Saartok T. Muscle strength and endurance do not significantly vary across 3 phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med. 2003;13(4):238–41.
Google Scholar
Giacomoni M, Bernard T, Gavarry O, Altare S, Falgairette G. Influence of the menstrual cycle phase and menstrual symptoms on maximal anaerobic performance. Med Sci Sports Exerc. 2000;32(2):486.
CAS
Google Scholar
Girija B, Veeraiah SH. Effect of different phases of menstrual cycle on physical working capacity in Indian population. Indian J Physiol Pharmacol. 2011;55(2):165–9.
CAS
Google Scholar
Gordon D, Hughes F, Young K, Scruton A, Keiller D, Caddy O, et al. The effects of menstrual cycle phase on the development of peak torque under isokinetic conditions. Isokinet Exerc Sci. 2013;21(4):285–91.
Google Scholar
Gordon D, Scruton A, Barnes R, Baker J, Prado L, Merzbach V. The effects of menstrual cycle phase on the incidence of plateau at and associated cardiorespiratory dynamics. Clin Physiol Funct Imaging. 2018;38(4):689–98. https://doi.org/10.1111/cpf.12469.
CAS
Article
PubMed
PubMed Central
Google Scholar
Grucza R, Pekkarinen H, Titov EK, Kononoff A, Hänninen O. Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. Eur J Appl Physiol Occup Physiol. 1993;67(3):279–85.
CAS
PubMed
PubMed Central
Google Scholar
Grucza R, Pekkarinen H, Hanninen O. Cardiorespiratory responses to bicycle incremental exercise in women taking oral contraceptives. Biol Sport. 2002;19(3):267–79.
Google Scholar
Gür H. Concentric and eccentric isokinetic measurements in knee muscles during the menstrual cycle: a special reference to reciprocal moment ratios. Arch Phys Med Rehabil. 1997;78(5):501–5.
PubMed
PubMed Central
Google Scholar
Hertel J, Williams NI, Olmsted-Kramer LC, Leidy HJ, Putukian M. Neuromuscular performance and knee laxity do not change across the menstrual cycle in female athletes. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):817–22. https://doi.org/10.1007/s00167-006-0047-4.
Article
PubMed
PubMed Central
Google Scholar
Hoeger Bement MK, Rasiarmos RL, DiCapo JM, Lewis A, Keller ML, Harkins AL, et al. The role of the menstrual cycle phase in pain perception before and after an isometric fatiguing contraction. Eur J Appl Physiol. 2009;106(1):105–12.
PubMed
PubMed Central
Google Scholar
Hoshi A. Changes in muscular strength of women in different phases of the menstrual cycle. Bull Nippon Dent Univ. 1997;26:219–24.
CAS
Google Scholar
Jarvis SS, VanGundy TB, Galbreath MM, Shibata S, Okazaki K, Reelick MF, et al. Sex differences in the modulation of vasomotor sympathetic outflow during static handgrip exercise in healthy young humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):193–200.
Google Scholar
Julian R, Hecksteden A, Fullagar HH, Meyer T. The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One. 2017;12(3):e0173951. https://doi.org/10.1371/journal.pone.0173951.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jurkowski JE, Jones NL, Toews CJ, Sutton JR. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol. 1981;51(6):1493–9.
CAS
PubMed
PubMed Central
Google Scholar
Kaygisiz Z, Erkasap N, Soydan M. Cardiorespiratory responses to submaximal incremental exercise are not affected by one night’s sleep deprivation during the follicular and luteal phases of the menstrual cycle. Indian J Pharmacol. 2003;47(3):279–87.
Google Scholar
Kraemer WJ, Kim SK, Bush JA, Nindl BC, Volek JS, Spiering BA, et al. Influence of the menstrual cycle on proenkephalin peptide F responses to maximal cycle exercise. Euro J Appl Physiol. 2006;96(5):581–6.
CAS
Google Scholar
Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H. Muscle and tendon properties during menstrual cycle. Int J Sports Med. 2009;30(2):139–43. https://doi.org/10.1055/s-0028-1104573.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lara B, Gutiérrez Hellín J, Ruíz-Moreno C, Romero-Moraleda B, Del Coso J. Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br J Clin Pharmacol. 2019;86:745–52. https://doi.org/10.1111/bcp.14175.
CAS
Article
Google Scholar
Lara B, Gutiérrez-Hellín J, García-Bataller A, Rodríguez-Fernández P, Romero-Moraleda B, Del Coso J. Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle. Euro J Nutr. 2019. https://doi.org/10.1007/s00394-019-02100-7.
Article
Google Scholar
Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437–44.
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Petrofsky JS, Daher N, Berk L, Laymon M. Differences in anterior cruciate ligament elasticity and force for knee flexion in women: oral contraceptive users versus non-oral contraceptive users. Euro J Appl Physiol. 2014;114(2):285–94. https://doi.org/10.1007/s00421-013-2771-z.
CAS
Article
Google Scholar
Lynch NJ, Nimmo MA. Effects of menstrual cycle phase and oral contraceptive use on intermittent exercise. Eur J Appl Physiol Occup Physiol. 1998;78(6):565–72.
CAS
PubMed
PubMed Central
Google Scholar
Masterson G. The impact of menstrual phases on anaerobic power performance in collegiate women. J Strength Cond Res. 1999;13(4):325–9.
Google Scholar
Mattu AT, Iannetta D, MacInnis MJ, Doyle-Baker PK, Murias JM. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand J Med Sci Sports. 2019. https://doi.org/10.1111/sms.13590.
Article
PubMed
PubMed Central
Google Scholar
McCracken M, Ainsworth B, Hackney AC. Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol Occup Physiol. 1994;69(2):174–5.
CAS
PubMed
PubMed Central
Google Scholar
Montgomery MM, Shultz SJ. Isometric knee-extension and knee-flexion torque production during early follicular and postovulatory phases in recreationally active women. J Athl Train. 2010;45(6):586–93.
PubMed
PubMed Central
Google Scholar
Okudan N, Gokbel H, Ucok K, Baltaci A. Serum leptin concentration and anaerobic performance do not change during the menstrual cycle of young females. Neuroendocrinol Lett. 2005;26(4):297–300.
CAS
PubMed
PubMed Central
Google Scholar
Otaka M, Chen SM, Zhu Y, Tsai YS, Tseng CY, Fogt DL, et al. Does ovulation affect performance in tennis players? Br J Sports Med. 2018;4(1):e000305. https://doi.org/10.1136/bmjsem-2017-000305.
Article
Google Scholar
Petrofsky J, Al Malty A, Suh HJ. Isometric endurance, body and skin temperature and limb and skin blood flow during the menstrual cycle. Med Sci Moni. 2007;13(3):111–7.
Google Scholar
Quadagno D, Faquin L, Lim GN, Kuminka W, Moffatt R. The menstrual cycle: does it affect athletic performance? Physician Sports Med. 1991;19(3):121–4.
Google Scholar
Redman LM, Scroop GC, Norman RJ. Impact of menstrual cycle phase on the exercise status of young, sedentary women. Euro J Appl Physiol. 2003;90(5–6):505–13. https://doi.org/10.1007/s00421-003-0889-0.
Article
Google Scholar
Rodrigues P, de Azevedo Correia M, Wharton L. Effect of menstrual cycle on muscle strength. J Exerc Physiol Online. 2019;22(5):89–96.
Google Scholar
Romero-Moraleda B, Del Coso J, Gutiérrez-Hellín J, Ruiz-Moreno C, Grgic J, Lara B. The influence of the menstrual cycle on muscle strength and power performance. J Hum Kinet. 2019;68:123–33.
PubMed
PubMed Central
Google Scholar
Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol. 1996;493(1):267–72.
CAS
PubMed
PubMed Central
Google Scholar
Shaharudin S, Ghosh AK, Ismail AA. Anaerobic capacity of physically active eumenorrheic females at mid-luteal and mid-follicular phases of ovarian cycle. J Sports Med Phys Fitness. 2011;51(4):576.
CAS
PubMed
PubMed Central
Google Scholar
Sipavičienė S, Daniusevičiutė L, Klizienė I, Kamandulis S, Skurvydas A. Effects of estrogen fluctuation during the menstrual cycle on the response to stretch-shortening exercise in females. Biomed Res Int. 2013;2013:1–6. https://doi.org/10.1155/2013/243572.
CAS
Article
Google Scholar
Smekal G, Von Duvillard SP, Frigo P, Tegelhofer T, Pokan R, Hofmann P, et al. Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc. 2007;39(7):1098–106. https://doi.org/10.1249/mss.0b013e31805371e7.
CAS
Article
Google Scholar
Sunderland C, Nevill M. Effect of the menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. Euro J Appl Physiol. 2003;88(4–5):345–52. https://doi.org/10.1007/s00421-002-0722-1.
CAS
Article
Google Scholar
Sunderland C, Tunaley V, Horner F, Harmer D, Stokes KA. Menstrual cycle and oral contraceptives’ effects on growth hormone response to sprinting. Appl Physiol Nutr Metab. 2011;36(4):495–502. https://doi.org/10.1139/h11-039.
CAS
Article
Google Scholar
Takase K, Nishiyasu T, Asano K. Modulating effects of the menstrual cycle on cardiorespiratory responses to exercise under acute hypobaric hypoxia. Jpn J Physiol. 2002;52(6):553–60. https://doi.org/10.2170/jjphysiol.52.553.
Article
Google Scholar
Tounsi M, Jaafar H, Aloui A, Souissi N. Soccer-related performance in eumenorrheic Tunisian high-level soccer players: effects of menstrual cycle phase and moment of day. J Sports Med Phys Fitness. 2018;58(4):497–502. https://doi.org/10.23736/s0022-4707.17.06958-4.
Article
Google Scholar
Tsampoukos A, Peckham EA, James R, Nevill ME. Effect of menstrual cycle phase on sprinting performance. Eur J Appl Physiol. 2010;109(4):659–67. https://doi.org/10.1007/s00421-010-1384-z.
CAS
Article
Google Scholar
Wearing MP, Yuhosz MD, Campbell R, Love EJ. The effect of the menstrual cycle on tests of physical fitness. J Sports Med Phys Fitness. 1972;12(1):38–41.
CAS
Google Scholar
Wiecek M, Szymura J, Maciejczyk M, Cempla J, Szygula Z. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power. Acta Physiol Hung. 2016;103(1):127–32. https://doi.org/10.1556/036.103.2016.1.13.
CAS
Article
Google Scholar
Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6. https://doi.org/10.1016/j.jclinepi.2010.07.015.
Article
Google Scholar
Elliot-Sale KJ, McNulty KL, Ansdell P, Goodall S, Hicks KM, Thomas K, et al. The effects of oral contraceptives on exercise performance in females: a systematic review and meta-analysis. Submitted to Sports Med 2020.
Schaumberg MA, Jenkins DG, de Jonge XA, Emmerton LM, Skinner TL. Three-step method for menstrual and oral contraceptive cycle verification. J Sci Med Sport. 2017;20(11):965–9. https://doi.org/10.1016/j.jsams.2016.08.013.
Article
PubMed
PubMed Central
Google Scholar
Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest. 1975;55(4):699–706.
CAS
PubMed
PubMed Central
Google Scholar
Wideman L, Montgomery MM, Levine BJ, Beynnon BD, Shultz SJ. Accuracy of calendar-based methods for assigning menstrual cycle phase in women. Sports Health. 2013;5(2):143–9. https://doi.org/10.1177/1941738112469930.
Article
PubMed
PubMed Central
Google Scholar
Bauman JE. Basal body temperature: unreliable method of ovulation detection. Fertil Steril. 1981;36(6):729–33.
CAS
PubMed
PubMed Central
Google Scholar
Barron ML, Fehring RJ. Basal body temperature assessment: is it useful to couples seeking pregnancy? MCN Am J Matern Child Nurs. 2005;30(5):290–6.
PubMed
PubMed Central
Google Scholar