Heckman MA, Weil J, Mejia D, Gonzalez E. Caffeine (1, 3, 7‐trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3).
Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56.
Article
CAS
PubMed
Google Scholar
Zwyghuizen-Doorenbos A, Roehrs TA, Lipschutz L, Timms V, Roth T. Effects of caffeine on alertness. Psychopharmacology. 1990;100(1):36–9.
Article
CAS
PubMed
Google Scholar
Lorist MM, Tops M. Caffeine, fatigue, and cognition. Brain Cogn. 2003;53(1):82–94.
Article
PubMed
Google Scholar
Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB. The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol. 2008;77(2):113–22.
Article
PubMed
Google Scholar
Gliottoni RC, Motl RW. Effect of caffeine on leg-muscle pain during intense cycling exercise: possible role of anxiety sensitivity. Int J Sport Nutr Exerc Metab. 2008;18(2):103–15.
Article
CAS
PubMed
Google Scholar
Fitt E, Pell D, Cole D. Assessing caffeine intake in the United Kingdom diet. Food Chem. 2013;140(3):421–6.
Article
CAS
PubMed
Google Scholar
Rivers WH, Webber HN. The action of caffeine on the capacity for muscular work. J Physiol. 1907;36(1):33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–34.
Article
CAS
PubMed
Google Scholar
Stuart GR, Hopkins WG, Cook C, Cairns SP. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc. 2005;37(11):1998.
Article
CAS
PubMed
Google Scholar
Da Silva VL, Messias FR, Zanchi NE, Gerlinger-Romero F, Duncan MJ, Guimarães-Ferreira L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J Sports Med Phys Fitness. 2015;55(5):383–9.
PubMed
Google Scholar
Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–9.
Article
PubMed
Google Scholar
Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18(2):219–25.
Article
PubMed
Google Scholar
Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17(8):1029–36.
Article
PubMed
Google Scholar
Van Thuyne W, Roels K, Delbeke FT. Distribution of caffeine levels in urine in different sports in relation to doping control. Int J Sports Med. 2005;26(09):714–8.
Article
CAS
PubMed
Google Scholar
Del Coso J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36(4):555–61.
Article
PubMed
Google Scholar
Desbrow B, Leveritt M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int J Sports Nutr Exerc Metab. 2006;16(5):545–58.
Article
CAS
Google Scholar
Chester N, Wojek N. Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. Int J Sports Med. 2008;29(06):524–8.
Article
CAS
PubMed
Google Scholar
Kendall KL, Moon JR, Fairman CM, Spradley BD, Tai CY, Falcone PH, et al. Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men. Nutr Res. 2014;34(5):442–9.
Article
CAS
PubMed
Google Scholar
Dodd SL, Brooks E, Powers SK, Tulley R. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol. 1991;62(6):424–9.
Article
CAS
PubMed
Google Scholar
Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):1493–501.
Article
PubMed
Google Scholar
Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):1227–34.
Article
CAS
PubMed
Google Scholar
Gonçalves L, de Salles Painelli V, Yamaguchi G, de Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213–20.
Article
CAS
PubMed
Google Scholar
Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.
Article
CAS
PubMed
Google Scholar
Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):69–78.
Article
CAS
PubMed
Google Scholar
Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–85.
Article
PubMed
Google Scholar
Cook CJ, Crewther BT, Kilduff LP, Drawer S, Gaviglio CM. Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation–a randomized placebo-controlled trial. J Int Soc Sports Nutr. 2011;8(1):2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arendt J. Managing jet lag: some of the problems and possible new solutions. Sleep Med Rev. 2009;13(4):249–56.
Article
PubMed
Google Scholar
Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4(6):316–21.
Article
CAS
PubMed
Google Scholar
Maridakis V, O’Connor PJ, Dudley GA, McCully KK. Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. J Pain. 2007;8(3):237–43.
Article
CAS
PubMed
Google Scholar
Hurley CF, Hatfield DL, Riebe DA. The effect of caffeine ingestion on delayed onset muscle soreness. J Strength Cond Res. 2013;27(11):3101–9.
PubMed
Google Scholar
Pasman WJ, Van Baak MA, Jeukendrup AE, De Haan A. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med. 1995;16(04):225–30.
Article
CAS
PubMed
Google Scholar
Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175–84.
Article
PubMed Central
Google Scholar
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science. 2014;345(6201):1181–4.
Article
CAS
PubMed
Google Scholar
Reissig CJ, Strain EC, Griffiths RR. Caffeinated energy drinks—a growing problem. Drug Alcohol Depend. 2009;99(1):1.
Article
CAS
PubMed
Google Scholar
Waldron M, Patterson SD, Tallent J, Jeffries O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-analysis. Sports Med. 2018;48(5):1247–53.
Article
PubMed
Google Scholar
Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101–23.
Article
CAS
PubMed
Google Scholar
Loureiro LM, Reis CE, da Costa TH. Effects of coffee components on muscle glycogen recovery: a systematic review. Int J Sport Nutr Exerc Metab. 2018. https://doi.org/10.1123/ijsnem.2017-0342.
Article
PubMed
Google Scholar
Boulenger JP, Patel J, Post RM, Parma AM, Marangos PJ. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 1983;32(10):1135–42.
Article
CAS
PubMed
Google Scholar
Shi D, Nikodijević O, Jacobson KA, Daly JW. Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol. 1993;13(3):247–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svenningsson P, Nomikos GG, Fredholm BB. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci. 1999;19(10):4011–22.
Article
CAS
PubMed
Google Scholar
Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol. 1992;72(4):1297–303.
Article
CAS
PubMed
Google Scholar
Dager SR, Layton ME, Strauss W, Richards TL, Heide A, Friedman SD, et al. Human brain metabolic response to caffeine and the effects of tolerance. Am J Psychiatry. 1999;156(2):229–37.
CAS
PubMed
Google Scholar
Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International Society of Sports Nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caffeine for improved athletic performance (internet). 2011. http://www.ironman.com/triathlon-news/articles/2011/01/using-caffeine-to-improve-athletic-performance.aspx#axzz4yrkHmFDM. Accessed 2 Feb 2018.
Jeukendrup A. Do you need to refrain from coffee to get the maximal effect of caffeine? (internet). 2017 http://www.mysportscience.com/single-post/2017/06/18/Do-you-need-to-refrain-from-coffee-to-get-the-maximal-effect-of-caffeine. Accessed 2 Feb 2018.
Desbrow B, Hughes R, Leveritt M, Scheelings P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem Toxicol. 2007;45(9):1588–92.
Article
CAS
PubMed
Google Scholar
Desbrow B, Henry M, Scheelings P. An examination of consumer exposure to caffeine from commercial coffee and coffee-flavoured milk. J Food Compost Anal. 2012;28(2):114–8.
Article
CAS
Google Scholar
Areta JL, Irwin C, Desbrow B, et al. Inaccuracies in caffeine intake quantification and other important limitations in recent publication by Gonçalves et al. J Appl Physiol. 2017;123(5):1414.
Article
CAS
PubMed
Google Scholar
Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl ML, Benítez J, Bertilsson L. Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit. 2000;22(4):409–17.
Article
CAS
PubMed
Google Scholar
Lelo A, Miners JO, Robson R, Birkett DJ. Assessment of caffeine exposure: caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin Pharmacol Ther. 1986;39(1):54–9.
Article
CAS
PubMed
Google Scholar
Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86(1):240–4.
Article
CAS
PubMed
Google Scholar
Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011;7(4):e1002033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Josse AR, Da Costa LA, Campos H, El-Sohemy A. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr. 2012;96(3):665–71.
Article
PubMed
Google Scholar
Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo-controlled, crossover study. Ir J Med Sci. 2018. https://doi.org/10.1007/s11845-018-1780-7.
Article
PubMed
Google Scholar
Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018. https://doi.org/10.1249/MSS.0000000000001596.
Article
PubMed
Google Scholar
Loy BD, O’Connor PJ, Lindheimer JB, Covert SF. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. J Caffeine Res. 2015;5(2):73–81.
Article
CAS
Google Scholar
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.
CAS
PubMed
Google Scholar
Lau CE, Falk JL. Dose-dependent surmountability of locomotor activity in caffeine tolerance. Pharmacol Biochem Behav. 1995;52(1):139–43.
Article
CAS
PubMed
Google Scholar
Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999;47(4):445–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu L, Gonzalez FJ, Kalow W, Tang BK. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992;2(2):73–7.
Article
CAS
PubMed
Google Scholar
Tantcheva-Poór I, Zaigler M, Rietbrock S, Fuhr U. Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test. Pharmacogenetics. 1999;9(2):131–44.
PubMed
Google Scholar
Rasmussen BB, Brix TH, Kyvik KO, Brøsen K. The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics. 2002;12(6):473–8.
Article
CAS
PubMed
Google Scholar
Evans SM, Griffiths RR. Caffeine withdrawal: a parametric analysis of caffeine dosing conditions. J Pharmacol Exp Ther. 1999;289(1):285–94.
CAS
PubMed
Google Scholar
Van Soeren MH, Sathasivam P, Spriet LL, Graham TE. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol. 1993;75(2):805–12.
Article
PubMed
Google Scholar
Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol. 1991;71(6):2292–8.
Article
CAS
PubMed
Google Scholar
Spriet LL, MacLean DA, Dyck DJ, Hultman E, Cederblad G, Graham TE. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol. 1992;262(6):E891–8.
CAS
PubMed
Google Scholar
Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–7.
Article
PubMed
Google Scholar
Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sports athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):221–7.
Article
CAS
PubMed
Google Scholar
Laursen PB, Francis GT, Abbiss CR, Newton MJ, Nosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9.
Article
PubMed
Google Scholar
Lane JD, Steege JF, Rupp SL, Kuhn CM. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol. 1992;43(5):543–6.
Article
CAS
PubMed
Google Scholar
Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol. 2004;93(8):1022–6.
Article
CAS
PubMed
Google Scholar
Butts NK, Crowell D. Effect of caffeine ingestion on cardiorespiratory endurance in men and women. Res Q Exerc Sport. 1985;56(4):301–5.
Article
Google Scholar
Skinner T, Desbrow B, Schaumberg M, Osborne J, Grant G, Anoopkumar-Dukie S, Leveritt M. Do women experience the same ergogenic response to caffeine as men? J Sci Med Sport. 2015;19:e67.
Article
Google Scholar
Collomp K, Ahmaidi S, Chatard JC, Audran M, Prefaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64(4):377–80.
Article
CAS
PubMed
Google Scholar
Skinner T, Jenkins D, Coombes J, Leveritt M, Taaffe D. Does training status influence peak caffeine levels following caffeine ingestion? J Sci Med Sport. 2012;15(S1):53.
Article
Google Scholar
Sichieri R, Everhart JE. Validity of a Brazilian food frequency questionnaire against dietary recalls and estimated energy intake. Nutr Res. 1998;18(10):1649–59.
Article
CAS
Google Scholar
Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867–74.
Article
CAS
PubMed
Google Scholar
Fisher SM, McMurray RG, Berry M, Mar MH, Forsythe WA. Influence of caffeine on exercise performance in habitual caffeine users. Int J Sports Med. 1986;7(05):276–80.
Article
CAS
PubMed
Google Scholar
Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–32.
Article
CAS
PubMed
Google Scholar
Doepker C, Lieberman HR, Smith AP, Peck JD, El-Sohemy A, Welsh BT. Caffeine: friend or foe? Annu Rev Food Sci Technol. 2016;7:117–37.
Article
CAS
PubMed
Google Scholar
Holtzman SG, Finn IB. Tolerance to behavioral effects of caffeine in rats. Pharmacol Biochem Behav. 1988;29(2):411–8.
Article
CAS
PubMed
Google Scholar
Kaplan GB, Greenblatt DJ, Kent MA, Cotreau-Bibbo MM. Caffeine treatment and withdrawal in mice: relationships between dosage, concentrations, locomotor activity and A1 adenosine receptor binding. J Pharmacol Exp Ther. 1993;266(3):1563–72.
CAS
PubMed
Google Scholar
Nehlig A. Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev. 1999;23(4):563–76.
Article
CAS
PubMed
Google Scholar
Bruce M, Scott N, Shine P, Lader M. Caffeine withdrawal: a contrast of withdrawal symptoms in normal subjects who have abstained from caffeine for 24 hours and for 7 days. J Psychopharmacol. 1991;5(2):129–34.
Article
CAS
PubMed
Google Scholar
Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology. 2004;176(1):1–29.
Article
CAS
PubMed
Google Scholar
James JE, Rogers PJ. Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology. 2005;182(1):1–8.
Article
CAS
PubMed
Google Scholar
Irwin C, Desbrow B, Ellis A, O’Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509–15.
Article
PubMed
Google Scholar
Pickering C, Kiely J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018;48(1):7–16.
Article
PubMed
Google Scholar
Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–8.
CAS
PubMed
Google Scholar
McNaughton L. Two levels of caffeine ingestion on blood lactate and free fatty acid responses during incremental exercise. Res Q Exerc Sport. 1987;58(3):255–9.
Article
Google Scholar
Gonglach AR, Ade CJ, Bemben MG, Larson RD, Black CD. Muscle pain as a regulator of cycling intensity: effect of caffeine ingestion. Med Sci Sports Exerc. 2016;48(2):287–96.
Article
CAS
PubMed
Google Scholar
Stevens CJ, Mauger AR, Hassmèn P, Taylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2018;48(3):525–37.
Article
PubMed
Google Scholar
Pickering C. Caffeine, CYP1A2 genotype, and sports performance: is timing important? Ir J Med Sci. https://doi.org/10.1007/s11845-018-1811-4.
Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48(S1):79–91.
Article
PubMed
PubMed Central
Google Scholar
Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol. 2002;93(3):990–9.
Article
PubMed
Google Scholar
Burke LM. Practical issues in evidence-based use of performance supplements: supplement interactions, repeated use and individual responses. Sports Med. 2017;47(1):79–100.
Article
PubMed
PubMed Central
Google Scholar