Skip to main content
Log in

Considerations in the Pharmacologic Treatment and Prevention of Neonatal Sepsis

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The management of neonatal sepsis is challenging owing to complex developmental and environmental factors that contribute to inter-individual variability in the pharmacokinetics and pharmacodynamics of many antimicrobial agents. In this review, we describe (i) the changing epidemiology of early- and late-onset neonatal sepsis; (ii) the pharmacologic considerations that influence the safety and efficacy of antibacterials, antifungals, and immunomodulatory adjuvants; and (iii) the recommended dosing regimens for pharmacologic agents commonly used in the treatment and prevention of neonatal sepsis. Neonatal sepsis is marked by high morbidity and mortality, such that prompt initiation of antimicrobial therapy is essential following culture collection. Before culture results are available, combination therapy with ampicillin and an aminoglycoside is recommended. When meningitis is suspected, ampicillin and cefotaxime may be considered. Following identification of the causative organism and in vitro susceptibility testing, antimicrobial therapy may be narrowed to provide targeted coverage. Therapeutic drug monitoring should be considered for neonates receiving vancomycin or aminoglycoside therapies. For neonates with invasive fungal infections, the development of new antifungal agents has significantly improved therapeutic outcomes in recent years. Liposomal amphotericin B has been found to be safe and efficacious in patients with renal impairment or toxicity caused by conventional amphotericin B. Antifungal prophylaxis with fluconazole has also been reported to dramatically reduce rates of neonatal invasive fungal infections and to improve long-term neurodevelopmental outcomes among treated children. Additionally, several large multicenter studies are currently investigating the safety and efficacy of oral lactoferrin as an immunoprophylactic agent for the prevention of neonatal sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bizzarro MJ, Raskind C, Baltimore RS, Gallagher PG. Seventy-five years of neonatal sepsis at Yale: 1928–2003. Pediatrics. 2005;116(3):595–602.

    Article  PubMed  Google Scholar 

  2. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.

    Article  CAS  PubMed  Google Scholar 

  3. Klein J. Bacterial sepsis and meningitis. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  4. Cohen-Wolkowiez M, Moran C, Benjamin DK, Cotten CM, Clark RH, Benjamin DK Jr, et al. Early and late onset sepsis in late preterm infants. Pediatr Infect Dis J. 2009;28(12):1052–6.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP, et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.

    Article  PubMed  Google Scholar 

  6. Andrews WW, Schelonka R, Waites K, Stamm A, Cliver SP, Moser S. Genital tract methicillin-resistant Staphylococcus aureus: risk of vertical transmission in pregnant women. Obstet Gynecol. 2008;111(1):113–8.

    Article  PubMed  Google Scholar 

  7. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17(3):638–80.

    Google Scholar 

  8. Vergnano S, Menson E, Kennea N, Embleton N, Russell AB, Watts T, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F9–14.

    Article  PubMed  Google Scholar 

  9. Nizet V, Klein JO. Bacterial sepsis and meningitis. In: Remington JS, Klein JO, Wilson CB, et al., editors. Infectious diseases of the fetus and newborn infant. 7th ed. Philadelphia: Elsevier Saunders; 2011. p. 222–75.

    Google Scholar 

  10. Johnson PJ. Neonatal pharmacology–pharmacokinetics. Neonatal Netw. 2011;30(1):54–61.

    Article  PubMed  Google Scholar 

  11. Yaffe S, Aranda JV. Neonatal and pediatric pharmacology: therapeutic principles in practice. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

  12. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  CAS  PubMed  Google Scholar 

  13. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.

    CAS  PubMed  Google Scholar 

  14. Anderson GD, Lynn AM. Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy. 2009;29(6):680–90.

    Article  CAS  PubMed  Google Scholar 

  15. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics–pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Paap CM, Nahata MC. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin Pharmacokinet. 1990;19(4):280–318.

    Article  CAS  PubMed  Google Scholar 

  17. Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of antimicrobial agents in the elderly. Rev Infect Dis. 1987;9(2):250–64.

    Article  CAS  PubMed  Google Scholar 

  18. Neely MN, Reed MD. The pharmacokinetic–pharmacodynamic basis of optimal antibiotic dosing. In: Long S, Pickering L, Prober C, editors. Principles and practices of pediatric infectious diseases. 4th ed. Philadelphia: Elsevier Saunders; 2011.

  19. Buxton ILO, Benet LZ. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Brunton L, Chabner B, Knollman B, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 17–39.

  20. van den Anker JN. Developmental pharmacology. Dev Disabil Res Rev. 2010;16(3):233–8.

    Article  PubMed  Google Scholar 

  21. Gupta M, Brans YW. Gastric retention in neonates. Pediatrics. 1978;62(1):26–9.

    CAS  PubMed  Google Scholar 

  22. Koren G. Therapeutic drug monitoring principles in the neonate. National Academy of Clinical Biochemistry. Clin Chem. 1997;43(1):222–7.

    CAS  PubMed  Google Scholar 

  23. Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657–8.

    Article  CAS  PubMed  Google Scholar 

  24. Touw DJ, Westerman EM, Sprij AJ. Therapeutic drug monitoring of aminoglycosides in neonates. Clin Pharmacokinet. 2009;48(2):71–88.

    Article  CAS  PubMed  Google Scholar 

  25. Kadambari S, Heath PT, Sharland M, Lewis S, Nichols A, Turner MA. Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units. J Antimicrob Chemother. 2011;66(11):2647–50.

    Article  CAS  PubMed  Google Scholar 

  26. Siber GR, Echeverria P, Smith AL, Paisley JW, Smith DH. Pharmacokinetics of gentamicin in children and adults. J Infect Dis. 1975;132(6):637–51.

    Article  CAS  PubMed  Google Scholar 

  27. Windorfer A, Kuenzer W, Urbanek R. The influence of age on the activity of acetylsalicylic acid-esterase and protein-salicylate binding. Eur J Clin Pharmacol. 1974;7(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  28. Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–93.

    Article  CAS  PubMed  Google Scholar 

  29. Lees P, Shojaee Aliabadi F. Rational dosing of antimicrobial drugs: animals versus humans. Int J Antimicrob Agents. 2002;19(4):269–84.

    Article  CAS  PubMed  Google Scholar 

  30. Cuzzolin L. Drug metabolizing enzymes in the perinatal and neonatal period: differences in the expression and activity. Curr Drug Metab. 2013;14(2):167–73.

    CAS  PubMed  Google Scholar 

  31. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver—evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.

    Article  CAS  PubMed  Google Scholar 

  32. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.

    Article  PubMed  Google Scholar 

  33. Rakhmanina NY, van den Anker JN. Pharmacological research in pediatrics: from neonates to adolescents. Adv Drug Deliv Rev. 2006;58(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  34. Sonntag J, Prankel B, Waltz S. Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1500 g. Eur J Pediatr. 1996;155(9):815–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  36. Allegaert K, Anderson BJ, van den Anker JN, Vanhaesebrouck S, de Zegher F. Renal drug clearance in preterm neonates: relation to prenatal growth. Ther Drug Monitor. 2007;29(3):284–91.

    Article  CAS  Google Scholar 

  37. Nierenberg DW. Drug inhibition of penicillin tubular secretion: concordance between in vitro and clinical findings. J Pharmacol Exp Ther. 1987;240(3):712–6.

    CAS  PubMed  Google Scholar 

  38. Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2000;2(1):E3.

    CAS  PubMed  Google Scholar 

  39. Gilman JT. Therapeutic drug monitoring in the neonate and paediatric age group. Problems and clinical pharmacokinetic implications. Clin Pharmacokinet. 1990;19(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  40. de Hoog M, Mouton JW, van den Anker JN. New dosing strategies for antibacterial agents in the neonate. Semin Fetal Neonatal Med. 2005;10(2):185–94.

    Article  PubMed  Google Scholar 

  41. Waites KB, Sims PJ, Crouse DT, Geerts MH, Shoup RE, Hamrick WB, et al. Serum concentrations of erythromycin after intravenous infusion in preterm neonates treated for Ureaplasma urealyticum infection. Pediatr Infect Dis J. 1994;13(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  42. Healy CM, Hulten KG, Palazzi DL, Campbell JR, Baker CJ. Emergence of new strains of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Clin Infect Dis. 2004;39(10):1460–6.

    Article  PubMed  Google Scholar 

  43. Dotis J, Iosifidis E, Ioannidou M, Roilides E. Use of linezolid in pediatrics: a critical review. Int J Infect Dis. 2010;14(8):e638–48.

    Article  CAS  PubMed  Google Scholar 

  44. Deville JG, Adler S, Azimi PH, Jantausch BA, Morfin MR, Beltran S, et al. Linezolid versus vancomycin in the treatment of known or suspected resistant gram-positive infections in neonates. Pediatr Infect Dis J. 2003;22(9 Suppl):S158–63.

    Article  PubMed  Google Scholar 

  45. Clissold SP, Todd PA, Campoli-Richards DM. Imipenem/cilastatin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1987;33(3):183–241.

    Article  CAS  PubMed  Google Scholar 

  46. Blumer JL, Reed MD, Kearns GL, Jacobs RF, Gooch WM 3rd, Yogev R, et al. Sequential, single-dose pharmacokinetic evaluation of meropenem in hospitalized infants and children. Antimicrob Agents Chemother. 1995;39(8):1721–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Empiric use of ampicillin and cefotaxime, compared with ampicillin and gentamicin, for neonates at risk for sepsis is associated with an increased risk of neonatal death. Pediatrics. 2006;117(1):67–74.

    Article  PubMed  Google Scholar 

  48. Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin DK Jr. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics. 2006;118(2):717–22.

    Article  PubMed  Google Scholar 

  49. Mustafa MM, McCracken GH Jr. Antimicrobial agents in pediatrics. Infect Dis Clin N Am. 1989;3(3):491–506.

    CAS  Google Scholar 

  50. National Institute of Health and Clinical Excellence (NICE) Clinical Guideline. Antibiotics for early-onset neonatal infection: antibiotics for the prevention and treatment of early-onset neonatal infection. 2012. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0051825/. Accessed 1 Sept 2013

  51. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr. 1996;129(2):275–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA. Frequency of low level bacteremia in infants from birth to two months of age. Pediatr Infect Dis J. 1997;16(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  53. Polin RA. The “ins and outs” of neonatal sepsis. J Pediatr. 2003;143(1):3–4.

    Article  PubMed  Google Scholar 

  54. Kumar Y, Qunibi M, Neal TJ, Yoxall CW. Time to positivity of neonatal blood cultures. Arch Dis Child Fetal Neonatal Ed. 2001;85(3):F182–6.

    Article  CAS  PubMed  Google Scholar 

  55. Pichichero ME, Todd JK. Detection of neonatal bacteremia. J Pediatr. 1979;94(6):958–60.

    Article  CAS  PubMed  Google Scholar 

  56. Red Book. 2012 Report of the committee on infectious diseases. Elk Grove: American Academy of Pediatrics; 2012.

  57. El Desoky ES, Sheikh AA, Al Hammadi AY. Aminoglycoside and vancomycin serum concentration monitoring and mortality due to neonatal sepsis in Saudi Arabia. J Clin Pharm Ther. 2003;28(6):479–83.

    Article  PubMed  Google Scholar 

  58. de Hoog M, Schoemaker RC, Mouton JW, van den Anker JN. Vancomycin population pharmacokinetics in neonates. Clin Pharm Ther. 2000;67(4):360–7.

    Article  Google Scholar 

  59. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.

    Article  CAS  PubMed  Google Scholar 

  60. Richardson MD. Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother. 2005;56(Suppl 1):i5–11.

    Article  CAS  PubMed  Google Scholar 

  61. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2 Pt 1):285–91.

    Article  PubMed  Google Scholar 

  62. Langan EA, Agarwal RP, Subudhi CP, Judge MR. Aspergillus fumigatus: a potentially lethal ubiquitous fungus in extremely low birthweight neonates. Pediatr Dermatol. 2010;27(4):403–4.

    Article  PubMed  Google Scholar 

  63. Roilides E, Zaoutis TE, Walsh TJ. Invasive zygomycosis in neonates and children. Clin Microbiol Infect. 2009;15(Suppl 5):50–4.

    Article  PubMed  Google Scholar 

  64. Benjamin DK Jr, DeLong ER, Steinbach WJ, Cotton CM, Walsh TJ, Clark RH. Empirical therapy for neonatal candidemia in very low birth weight infants. Pediatrics. 2003;112(3 Pt 1):543–7.

    Article  PubMed  Google Scholar 

  65. Benjamin DK Jr, Stoll BJ, Gantz MG, Walsh MC, Sanchez PJ, Das A, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126(4):e865–73.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Procianoy RS, Eneas MV, Silveira RC. Empiric guidelines for treatment of Candida infection in high-risk neonates. Eur J Pediatr. 2006;165(6):422–3.

    Article  PubMed  Google Scholar 

  67. van den Anker JN, van Popele NM, Sauer PJ. Antifungal agents in neonatal systemic candidiasis. Antimicrob Agents Chemother. 1995;39(7):1391–7.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Juster-Reicher A, Leibovitz E, Linder N, Amitay M, Flidel-Rimon O, Even-Tov S, et al. Liposomal amphotericin B (AmBisome) in the treatment of neonatal candidiasis in very low birth weight infants. Infection. 2000;28(4):223–6.

    Article  CAS  PubMed  Google Scholar 

  69. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7.

    Article  CAS  PubMed  Google Scholar 

  70. Grant SM, Clissold SP. Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs. 1990;39(6):877–916.

    Article  CAS  PubMed  Google Scholar 

  71. Fasano C, O’Keeffe J, Gibbs D. Fluconazole treatment of neonates and infants with severe fungal infections not treatable with conventional agents. Eur J Clin Microbiol Infect Dis. 1994;13(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  72. Walsh TJ, Adamson PC, Seibel NL, Flynn PM, Neely MN, Schwartz C, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49(11):4536–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hope WW, Seibel NL, Schwartz CL, Arrieta A, Flynn P, Shad A, et al. Population pharmacokinetics of micafungin in pediatric patients and implications for antifungal dosing. Antimicrob Agents Chemother. 2007;51(10):3714–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Smith PB, Walsh TJ, Hope W, Arrieta A, Takada A, Kovanda LL, et al. Pharmacokinetics of an elevated dosage of micafungin in premature neonates. Pediatr Infect Dis J. 2009;28(5):412–5.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hope WW, Smith PB, Arrieta A, Buell DN, Roy M, Kaibara A, et al. Population pharmacokinetics of micafungin in neonates and young infants. Antimicrob Agents Chemother. 2010;54(6):2633–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, et al. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004;38(2):161–89.

    Article  PubMed  Google Scholar 

  77. Azizia M, Lloyd J, Allen M, Klein N, Peebles D. Immune status in very preterm neonates. Pediatrics. 2012;129(4):e967–74.

    Article  PubMed  Google Scholar 

  78. Ballow M, Cates KL, Rowe JC, Goetz C, Desbonnet C. Development of the immune system in very low birth weight (less than 1500 g) premature infants: concentrations of plasma immunoglobulins and patterns of infections. Pediatr Res. 1986;20(9):899–904.

    Article  CAS  PubMed  Google Scholar 

  79. Locksmith G, Duff P. Infection, antibiotics, and preterm delivery. Semin Perinatol. 2001;25(5):295–309.

    Article  CAS  PubMed  Google Scholar 

  80. Hill HR. Intravenous immunoglobulin use in the neonate: role in prophylaxis and therapy of infection. Pediatr Infect Dis J. 1993;12(7):549–58 (quiz 59).

    Google Scholar 

  81. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev. 2004;(1):CD001239.

  82. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev. 2004;(1):CD000361.

  83. Baley JE. Neonatal sepsis: the potential for immunotherapy. Clin Perinatol. 1988;15(4):755–71.

    CAS  PubMed  Google Scholar 

  84. Christensen RD, Brown MS, Hall DC, Lassiter HA, Hill HR. Effect on neutrophil kinetics and serum opsonic capacity of intravenous administration of immune globulin to neonates with clinical signs of early-onset sepsis. J Pediatr. 1991;118(4 Pt 1):606–14.

    Article  CAS  PubMed  Google Scholar 

  85. Mohan PV, Tarnow-Mordi W, Stenson B, Brocklehurst P, Haque K, Cavendish V, et al. Can polyclonal intravenous immunoglobulin limit cytokine mediated cerebral damage and chronic lung disease in preterm infants? Arch Dis Child Fetal Neonatal Ed. 2004;89(1):F5–8.

    Article  CAS  PubMed  Google Scholar 

  86. Alejandria MM, Lansang MA, Dans LF, Mantaring JB. Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev. 2002;(1):CD001090.

  87. Brocklehurst P, Farrell B, King A, Juszczak E, Darlow B, Haque K, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365(13):1201–11.

    Article  PubMed  Google Scholar 

  88. al-Mulla ZS, Christensen RD. Neutropenia in the neonate. Clin Perinatol. 1995;22(3):711–39.

    CAS  PubMed  Google Scholar 

  89. Rodwell RL, Taylor KM, Tudehope DI, Gray PH. Hematologic scoring system in early diagnosis of sepsis in neutropenic newborns. Pediatr Infect Dis J. 1993;12(5):372–6.

    Article  CAS  PubMed  Google Scholar 

  90. Davies EG. The immunology of neonates and children and its relation to susceptibility to infection. London: Springer; 2008.

    Google Scholar 

  91. Sachs UJ, Reiter A, Walter T, Bein G, Woessmann W. Safety and efficacy of therapeutic early onset granulocyte transfusions in pediatric patients with neutropenia and severe infections. Transfusion. 2006;46(11):1909–14.

    Article  PubMed  Google Scholar 

  92. Pammi M, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropenia. Cochrane Database Syst Rev. 2011;(10):CD003956.

  93. Saez-Llorens X, McCracken GH Jr. Bacterial meningitis in children. Lancet. 2003;361(9375):2139–48.

    Article  PubMed  Google Scholar 

  94. Goldmann DA, Durbin WA Jr, Freeman J. Nosocomial infections in a neonatal intensive care unit. J Infect Dis. 1981;144(5):449–59.

    Article  CAS  PubMed  Google Scholar 

  95. Sande MA, Tauber MG, Scheld WM, McCracken GH Jr. Pathophysiology of bacterial meningitis: summary of the workshop. Pediatr Infect Dis J. 1989;8(12):929–33.

    Article  CAS  PubMed  Google Scholar 

  96. Saravolatz LD, Manzor O, VanderVelde N, Pawlak J, Belian B. Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis. 2003;36(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  97. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.

    Article  PubMed  Google Scholar 

  98. El Bashir H, Laundy M, Booy R. Diagnosis and treatment of bacterial meningitis. Arch Dis Child. 2003;88(7):615–20.

    Article  PubMed  Google Scholar 

  99. Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336(10):708–16.

    Article  CAS  PubMed  Google Scholar 

  100. Renier D, Flandin C, Hirsch E, Hirsch JF. Brain abscesses in neonates. A study of 30 cases. J Neurosurg. 1988;69(6):877–82.

    Article  CAS  PubMed  Google Scholar 

  101. Graham DR, Band JD. Citrobacter diversus brain abscess and meningitis in neonates. JAMA. 1981;245(19):1923–5.

    Article  CAS  PubMed  Google Scholar 

  102. Schrag SJ, Zywicki S, Farley MM, Reingold AL, Harrison LH, Lefkowitz LB, et al. Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. N Engl J Med. 2000;342(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  103. Schrag S, Gorwitz R, Fultz-Butts K, Schuchat A. Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep. 2002;51(RR-11):1–22.

    PubMed  Google Scholar 

  104. Van Dyke MK, Phares CR, Lynfield R, Thomas AR, Arnold KE, Craig AS, et al. Evaluation of universal antenatal screening for group B streptococcus. N Engl J Med. 2009;360(25):2626–36.

    Article  PubMed  Google Scholar 

  105. Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease—revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59(RR-10):1–36.

    PubMed  Google Scholar 

  106. Jordan HT, Farley MM, Craig A, Mohle-Boetani J, Harrison LH, Petit S, et al. Revisiting the need for vaccine prevention of late-onset neonatal group B streptococcal disease: a multistate, population-based analysis. Pediatr Infect Dis J. 2008;27(12):1057–64.

    Article  PubMed  Google Scholar 

  107. Baker CJ, Edwards MS. Group B streptococcal conjugate vaccines. Arch Dis Child. 2003;88(5):375–8.

    Article  CAS  PubMed  Google Scholar 

  108. Benjamin DK Jr, Stoll BJ, Fanaroff AA, McDonald SA, Oh W, Higgins RD, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1):84–92.

    Article  PubMed  Google Scholar 

  109. Kaufman DA, Manzoni P. Strategies to prevent invasive candidal infection in extremely preterm infants. Clin Perinatol. 2010;37(3):611–28.

    Article  PubMed  Google Scholar 

  110. Manzoni P, Jacqz-Aigrain E, Rizzollo S, Franco C, Stronati M, Mostert M, et al. Antifungal prophylaxis in neonates. Early Hum Dev. 2011;87(Suppl 1):S59–60.

    Article  PubMed  Google Scholar 

  111. Speer CP. Inflammatory mechanisms in neonatal chronic lung disease. Eur J Pediatr. 1999;158(Suppl 1):S18–22.

    Article  CAS  PubMed  Google Scholar 

  112. ELFIN Trial Investigators Group. Lactoferrin immunoprophylaxis for very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F2–4.

    Google Scholar 

  113. Ochoa TJ, Cleary TG. Effect of lactoferrin on enteric pathogens. Biochimie. 2009;91(1):30–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Valenti P, Antonini G. Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci. 2005;62(22):2576–87.

    Article  CAS  PubMed  Google Scholar 

  115. Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J. Lactoferrin structure and functions. Adv Exp Med Biol. 2008;606:163–94.

    Article  CAS  PubMed  Google Scholar 

  116. Scott PH. Plasma lactoferrin levels in newborn preterm infants: effect of infection. Ann Clin Biochem. 1989;26(Pt 5):412–5.

    PubMed  Google Scholar 

  117. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302(13):1421–8.

    Article  CAS  PubMed  Google Scholar 

  118. Venkatesh MP, Abrams SA. Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2010;(5):CD007137.

  119. Modi N, Dore CJ, Saraswatula A, Richards M, Bamford KB, Coello R, et al. A case definition for national and international neonatal bloodstream infection surveillance. Arch Dis Child Fetal Neonatal Ed. 2009;94(1):F8–12.

    Article  CAS  PubMed  Google Scholar 

  120. Isaacs CE, Kashyap S, Heird WC, Thormar H. Antiviral and antibacterial lipids in human milk and infant formula feeds. Arch Dis Child. 1990;65(8):861–4.

    Article  CAS  PubMed  Google Scholar 

  121. Winberg J, Wessner G. Does breast milk protect against septicaemia in the newborn? Lancet. 1971;1(7709):1091–4.

    Article  CAS  PubMed  Google Scholar 

  122. Ashraf RN, Jalil F, Zaman S, Karlberg J, Khan SR, Lindblad BS, et al. Breast feeding and protection against neonatal sepsis in a high risk population. Arch Dis Child. 1991;66(4):488–90.

    Article  CAS  PubMed  Google Scholar 

  123. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection. Semin Neonatol SN. 2002;7(4):275–81.

    Google Scholar 

  124. Goldman AS. The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J. 1993;12(8):664–71.

    Article  CAS  PubMed  Google Scholar 

  125. Wold A, Adlerberth I. Pathological consequences of commensalism. In: Nataro J, Blaser MJ, Cunningham-Rundless S, editors. Persistent bacterial infections. Washington: ASM Press; 2000.

  126. Hanson L, Dahlman-Hoglund A, Karlsson M, et al. Normal microbial flora of the gut and the immune system. In: Hanson L, Yoken RH, editors. Probiotics, other nutritional factors, and intestinal microflora. Philadelphia: Lippincott-Raven; 1999. p. 217–28.

    Google Scholar 

  127. Hasselbalch H, Jeppesen DL, Engelmann MD, Michaelsen KF, Nielsen MB. Decreased thymus size in formula-fed infants compared with breastfed infants. Acta Paediatr. 1996;85(9):1029–32.

    Article  CAS  PubMed  Google Scholar 

  128. Lam BC, Lee J, Lau YL. Hand hygiene practices in a neonatal intensive care unit: a multimodal intervention and impact on nosocomial infection. Pediatrics. 2004;114(5):e565–71.

    Article  PubMed  Google Scholar 

  129. Etienne KA, Subudhi CP, Chadwick PR, Settle P, Moise J, Magill SS, et al. Investigation of a cluster of cutaneous aspergillosis in a neonatal intensive care unit. J Hosp Infect. 2011;79(4):344–8.

    Article  CAS  PubMed  Google Scholar 

  130. Weston D. Infection prevention and control: theory and practice for healthcare professionals. West Sussex: Wiley; 2008.

    Book  Google Scholar 

  131. Edwards MS, Baker CJ. Bacterial infections in the neonate. In: Long S, Pickering L, Prober C, editors. Principles and practices of pediatric infectious diseases. 4th ed. Philadelphia: Elsevier Saunders; 2011.

  132. DiCenzo R, Forrest A, Slish JC, Cole C, Guillet R. A gentamicin pharmacokinetic population model and once-daily dosing algorithm for neonates. Pharmacotherapy. 2003;23(5):585–91.

    Article  CAS  PubMed  Google Scholar 

  133. Yoshioka H, Takimoto M, Riley HD Jr. Pharmacokinetics of ampicillin in the newborn infant. J Infect Dis. 1974;129(4):461–4.

    Article  CAS  PubMed  Google Scholar 

  134. Rodvold KA, Everett JA, Pryka RD, Kraus DM. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet. 1997;33(1):32–51.

    Article  CAS  PubMed  Google Scholar 

  135. Wurthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother. 2005;49(12):5092–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Piper L, Smith PB, Hornik CP, Cheifetz IM, Barrett JS, Moorthy G, et al. Fluconazole loading dose pharmacokinetics and safety in infants. Pediatr Infect Dis J. 2011;30(5):375–8.

    Article  PubMed Central  PubMed  Google Scholar 

  137. Wade KC, Wu D, Kaufman DA, Ward RM, Benjamin DK Jr, Sullivan JE, et al. Population pharmacokinetics of fluconazole in young infants. Antimicrob Agents Chemother. 2008;52(11):4043–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Doby EH, Benjamin DK Jr, Blaschke AJ, Ward RM, Pavia AT, Martin PL, et al. Therapeutic monitoring of voriconazole in children less than three years of age: a case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012;31(6):632–5.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None. No sources of funding were used to support the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. T. Sherwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockmann, C., Spigarelli, M.G., Campbell, S.C. et al. Considerations in the Pharmacologic Treatment and Prevention of Neonatal Sepsis. Pediatr Drugs 16, 67–81 (2014). https://doi.org/10.1007/s40272-013-0057-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-013-0057-x

Keywords

Navigation