Skip to main content
Log in

The Potential Role of Fosfomycin in Neonatal Sepsis Caused by Multidrug-Resistant Bacteria

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The broad-spectrum activity of fosfomycin, including against multidrug-resistant (MDR) strains, has led to renewed interest in its use in recent years. Neonatal sepsis remains a substantial cause of morbidity and mortality at a global level, with evidence that MDR bacteria play an increasing role. The evidence for use of fosfomycin in neonatal subjects is limited. We summarise current knowledge of the pharmacokinetics and clinical outcomes for the use of fosfomycin in neonatal sepsis and issues specific to neonatal physiology. While fosfomycin has a broad range of coverage, we evaluate the extent to which it may be effective against MDR bacteria in a neonatal setting, in light of recent evidence suggesting it to be most effective when administered in combination with other antibiotics. Given the urgency of clinical demand for treatment of MDR bacterial sepsis, we outline directions for further work, including the need for future clinical trials in this at-risk population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev. 2016;29(2):321–47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387:168–75.

    Article  PubMed  Google Scholar 

  3. Seale AC, Head MG, Fitchett EJA, et al. Neonatal infection: a major burden with minimal funding. Lancet Glob Health. 2015;3(11):e669–80.

    Article  PubMed  Google Scholar 

  4. Synnes A, Luu TM, Moddemann D, On behalf of the Canadian Neonatal Network and the Canadian Neonatal Follow-Up Network, et al. Determinants of developmental outcomes in a very preterm Canadian cohort. Arch Dis Child Fetal Neonatal Ed. 2017;102:F234–5.

  5. Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100:F257–63.

    Article  PubMed  Google Scholar 

  6. Russell ARB, Kumar R. Early onset neonatal sepsis: diagnostic dilemmas and practical management. Arch Dis Child Fetal Neonatal Ed. 2015;100:F350–4.

    Article  Google Scholar 

  7. Stoll ABJ, Hansen NI, Watterberg KL, et al. Early onset neonatal sepsis : the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsai M, Hsu J, Chu S, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Paediatr Infect Dis J. 2014;33(1):7–13.

    Article  Google Scholar 

  9. Tsai L, Chen Y, Tsou K. The impact of small-for-gestational-age on neonatal outcome among very-low-birth-weight infants. Pediatr Neonatol. 2015;56(2):101–7.

    Article  PubMed  Google Scholar 

  10. Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F9–14.

    Article  PubMed  Google Scholar 

  11. Pocket book of hospital care for children. Geneva: World Health Organisation; 2005. Available at: http://apps.who.int/iris/bitstream/10665/43206/1/9241546700.pdf. Accessed 7 Apr 2017.

  12. Lutsar I, Trafojer UMT, Heath PT, et al. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial. Trials. 2011;12(1):215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hornik CP, Herring AH, Benjamin DK, et al. Adverse events associated with meropenem versus imipenem/ cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32(7):748–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cailes B, Vergnano S, Kortsalioudaki C, et al. The current and future roles of neonatal infection surveillance programmes in combating antimicrobial resistance. Early Hum Dev. 2015;91(11):613–8.

    Article  PubMed  Google Scholar 

  15. Russell AB, Sharland M, Heath PT. Improving antibiotic prescribing in neonatal units: time to act. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F141–6.

    Article  PubMed  Google Scholar 

  16. Simon A, Tenenbaum T. Surveillance of multidrug-resistant Gram-negative pathogens in high-risk neonates—does it make a difference? Pediatr Infect Dis J. 2013;32(4):407–9.

    Article  PubMed  Google Scholar 

  17. Folgori L, Livadiotti S, Carletti M, et al. Epidemiology and clinical outcomes of multidrug-resistant, Gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J. 2014;33(9):929–32.

    Article  PubMed  Google Scholar 

  18. Bielicki JA, Lundin R, Sharland M, et al. Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.

    Article  PubMed  Google Scholar 

  19. Abdula N, Macharia J, Motsoaledi A, et al. National action for global gains in antimicrobial resistance. Lancet. 2016;387(10014):e3–5.

    Article  PubMed  Google Scholar 

  20. Downie L, Armiento R, Subhi R, et al. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics—systematic review and meta-analysis. Arch Dis Child. 2013;98(2):146–54.

    Article  PubMed  Google Scholar 

  21. Le Doare K, Bielicki J, Heath PT, et al. Systematic review of antibiotic resistance rates among Gram-negative bacteria in children with sepsis in resource-limited countries. J Pediatr Infect Dis Soc. 2015;4(1):11–20.

    Article  Google Scholar 

  22. Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4(10):e752–60.

    Article  Google Scholar 

  23. Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969;166:122–3.

    Article  CAS  PubMed  Google Scholar 

  24. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;16(2):217–36.

    Article  Google Scholar 

  25. Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235:364–86.

    Article  CAS  PubMed  Google Scholar 

  26. Takahata S, Ida T, Hiraishi T, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333–7.

    Article  CAS  PubMed  Google Scholar 

  27. Cao XL, Shen H, Xu YY, et al. High prevalence of fosfomycinresistancegene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol Infect. 2016;12:1–7.

    Google Scholar 

  28. Engel H, Gutiérrez-Fernández J, Flückiger C, et al. Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother. 2013;57(6):2801–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Molina MA, Olay T, Quero J. Pharmacodynamic data on fosfomycin in underweight infants during the neonatal period. Chemotherapy. 1977;23:217–22.

    Article  PubMed  Google Scholar 

  30. Guggenbichler JP, Kienel G. Fosfomycin, a new antibiotic drug. Pediatr Padol. 1978;13(4):429–36.

    CAS  Google Scholar 

  31. Guibert M, Magny JF, Poudenx F, et al. Comparative pharmacokinetics of fosfomycin in the neonate: 2 modes of administration. Pathol Biol. 1987;35(5):750–2.

    CAS  PubMed  Google Scholar 

  32. Suzuki S, Murayama Y, Sugiyama E, et al. Dose estimation for renal-excretion drugs in neonates and infants based on physiological development of renal function. Yakugaku Zasshi. 2009;129(7):829–42.

    Article  CAS  PubMed  Google Scholar 

  33. Iwai N, Nakamura H, Miyazu M, et al. A study of the absorption and excretion of fosfomycin sodium in children [in Japanese]. Jpn J Antibiot. 1991;44(3):345–56.

  34. Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  35. Andrews JM, Baquero F, Beltran JM, et al. International collaborative study on standardization of bacterial sensitivity to fosfomycin. J Antimicrob Chemother. 1983;12(4):357–61.

    Article  CAS  PubMed  Google Scholar 

  36. Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.

    Article  CAS  PubMed  Google Scholar 

  37. Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49(11):4448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mazzei T, Cassetta MI, Fallani S, et al. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):S35–41.

    Article  CAS  PubMed  Google Scholar 

  39. Docobo-Pérez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection. 1990;18:S65–9.

    Article  CAS  PubMed  Google Scholar 

  41. Borgia M, Longo A, Lodola E. Relative bioavailability of fosfomycin and of trometamol after administration of single dose by oral route of fosfomycin trometamol in fasting conditions and after a meal. Int J Clin Pharmacol Ther Toxicol. 1989;27(8):411–7.

    CAS  PubMed  Google Scholar 

  42. Cree M, Stacey S, Graham N, et al. Fosfomycin-investigation of a possible new route of administration of an old drug. A case study. J Cyst Fibros. 2007;6(3):244–6.

    Article  CAS  PubMed  Google Scholar 

  43. Llorens J, Lobato A, Olay T. The passage of fosfomycin into the cerebrospinal fluid in children’s meningitis. Chemotherapy. 1977;23(S1):189–95.

    Article  PubMed  Google Scholar 

  44. Traunmüller F, Popovic M, Konz KH, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50(8):493–503.

    Article  PubMed  Google Scholar 

  45. De Cock RFW, Allegaert K, Schreuder MF, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.

    Article  PubMed  Google Scholar 

  46. Iarikov D, Wassel R, Farley J, et al. Adverse events associated with fosfomycin use: review of the literature and analyses of the FDA adverse event reporting system database. Infect Dis Ther. 2015;4(4):433–58.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hartnoll G, Bétrémieux P, Modi N. Body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F56–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Brien F, Walker IA. Fluid homeostasis in the neonate. Paediatr Anaesth. 2014;24(1):49–59.

    Article  PubMed  Google Scholar 

  49. Taylor CG, Mascarós E, Román J, et al. Enteropathogenic E. coli gastroenterocolitis in neonates treated with fosfomycin. Chemotherapy. 1977;23(1):310–4.

  50. Rossignol S, Regnier C. Fosfomycin in severe infection in neonatology. Ann Pediatr. 1984;31(5):437–44.

    CAS  Google Scholar 

  51. Algubaisi S, Buhrer C, Thomale UW, et al. Favorable outcome in cerebral abscesses caused by Citrobacter koseri in a newborn infant. IDCases. 2015;2(1):22–4.

    Article  PubMed  Google Scholar 

  52. Guillois B, Guillemin MG, Thoma M, et al. Neonatal pleuropulmonary staphylococcal infection with multiple abscesses of the liver. Ann Pediatr. 1989;36(10):681–4.

    CAS  Google Scholar 

  53. Gouyon JB, François C, Semama D, et al. Nosocomial Staphylococcus epidermidis and Staphylococcus aureus septicemias in neonates. Ann Pediatr. 1990;37(1):21–5.

    CAS  Google Scholar 

  54. Hepping N, Simon A. Fosfomycin in paediatric cancer patients: a feasible alternative to glycopeptides? Int J Antimicrob Agents. 2009;33(4):389.

    Article  CAS  PubMed  Google Scholar 

  55. Falagas ME, Giannopoulou KP, Kokolakis GN, et al. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46(7):1069–77.

    Article  PubMed  Google Scholar 

  56. Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:e732–9.

    Article  CAS  PubMed  Google Scholar 

  57. Vardakas KZ, Legakis NJ, Triarides N, et al. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269–85.

    Article  CAS  PubMed  Google Scholar 

  58. Yu X, Song X, Cai Y, et al. In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. J Antibiot. 2010;63(11):657–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lu C, Liu C, Huang Y, et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 2011;55(9):4295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sultan A, Rizvi M, Khan F, et al. Increasing antimicrobial resistance among uropathogens: is fosfomycin the answer? Urol Ann. 2015;7(1):26–30.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chiquet C, Maurin M, Altayrac J, et al. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clin Microbiol Infect. 2015;21(6):592.e1–8.

  62. Falagas ME, Maraki S, Karageorgopoulos DE, et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents. 2010;35(5):497–9.

    Article  CAS  PubMed  Google Scholar 

  63. González JJ, Andreu A, Grupo de Estudio de Infección Perinatal, Sociedad Espanola de Enfermedades Infecciosas y MicrobiologiaClinica. Susceptibility of vertically transmitted Group B streptococci to antimicrobial agents [in Spanish]. Enferm Infecc Microbiol Clin. 2004;22(5):286–91.

    Article  PubMed  Google Scholar 

  64. Matthews PC, Barrett LK, Warren S, et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis. 2016;16(1):556.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen YT, Ahmad Murad K, Ng LS, et al. In vitro efficacy of six alternative antibiotics against multidrug resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections. Ann Acad Med Singapore. 2016;45(6):245–50.

    CAS  PubMed  Google Scholar 

  66. Ranjan A, Shaik S, Mondal A, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase-producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;60(11):6795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sahni RD, Balaji V, Varghese R, et al. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol. 2013;8(5):67580.

    Article  Google Scholar 

  68. Cheng A, Liu C, Tsai H, et al. Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. J Microbiol Immunol Infect. 2013;46(3):187–94.

    Article  PubMed  Google Scholar 

  69. Pogue JM, Marchaim D, Abreu-Lanfranco O, et al. Fosfomycinactivity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. J Antibiot. 2013;66(10):625–7.

    Article  CAS  PubMed  Google Scholar 

  70. Vanscoy B, Mccauley J, Bhavnani SM, et al. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nilsson AI, Berg OG, Aspevall O, et al. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother. 2003;47(9):2850–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karageorgopoulos DE, Wang R, Yu XH, et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.

    Article  CAS  PubMed  Google Scholar 

  73. Lara N, Cuevas O, Arroyo M, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–63.

    Article  PubMed  Google Scholar 

  74. Rodríguez-Avial I, Pena I, Picazo JJ, et al. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int J Antimicrob Agents. 2015;46(6):616–21.

    Article  PubMed  Google Scholar 

  75. Walsh CC, Landersdorfer CB, McIntosh MP, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71(8):2218–29.

    Article  CAS  PubMed  Google Scholar 

  76. Sime FB, Johnson A, Whalley S, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016;61(1):pii: e01763–16.

  77. De Man P, Verhoeven BA, Verbrugh HA, et al. An antibiotic policy to prevent emergence of resistant bacilli. Lancet. 2000;355(9208):973–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Sharland.

Ethics declarations

Funding

No funding was received for this article.

Conflict of interest

Grace Li, Joseph F. Standing, Julia Bielicki, John van den Anker and Mike Sharland declare no conflicts of interest. William Hope has received research funding from Pfizer, Gilead, Astellas, iCuris, Amplyx, Spero Therapeutics and F2G, and has acted as a consultant and/or given talks for Pfizer, Basilea, Astellas, F2G, Nordic Pharma, The Medicines Company, Amplyx, Mayne Pharma, Spero Therapeutics, Auspherix, Cardeas and Pulmocide. Paul T. Heath acts as an investigator for clinical trials conducted on behalf of St George’s, University London and sponsored by vaccine manufacturers, and has participated in advisory boards but receives no personal payments from these activities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Standing, J.F., Bielicki, J. et al. The Potential Role of Fosfomycin in Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Drugs 77, 941–950 (2017). https://doi.org/10.1007/s40265-017-0745-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0745-x

Keywords

Navigation