Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296(5566):346–9. https://doi.org/10.1126/science.1070238.
CAS
Article
PubMed
Google Scholar
Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–60. https://doi.org/10.1038/nature02284.
CAS
Article
PubMed
Google Scholar
Chiba K, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T, Ohtsuki M, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol. 1998;160(10):5037–44.
CAS
PubMed
Google Scholar
Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. https://doi.org/10.1016/j.pharmthera.2007.04.006.
CAS
Article
PubMed
Google Scholar
Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity. 2008;28(1):122–33. https://doi.org/10.1016/j.immuni.2007.11.017.
CAS
Article
PubMed
Google Scholar
Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–69. https://doi.org/10.1523/jneurosci.4645-04.2005.
CAS
Article
PubMed
PubMed Central
Google Scholar
van Doorn R, Lopes Pinheiro MA, Kooij G, Lakeman K, van het Hof B, van der Pol SM, et al. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier. J Neuroinflamm. 2012;9:133. https://doi.org/10.1186/1742-2094-9-133.
CAS
Article
Google Scholar
Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61–71. https://doi.org/10.1002/ana.21227.
CAS
Article
PubMed
Google Scholar
Czubowicz K, Jesko H, Wencel P, Lukiw WJ, Strosznajder RP. The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol. 2019;56(8):5436–55. https://doi.org/10.1007/s12035-018-1448-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther. 2018;185:34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001.
CAS
Article
PubMed
Google Scholar
Brinkmann V, Lynch KR. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol. 2002;14(5):569–75. https://doi.org/10.1016/s0952-7915(02)00374-6.
CAS
Article
PubMed
Google Scholar
Kataoka H, Sugahara K, Shimano K, Teshima K, Koyama M, Fukunari A, et al. FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell Mol Immunol. 2005;2(6):439–48.
CAS
PubMed
Google Scholar
Webb M, Tham CS, Lin FF, Lariosa-Willingham K, Yu N, Hale J, et al. Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol. 2004;153(1–2):108–21. https://doi.org/10.1016/j.jneuroim.2004.04.015.
CAS
Article
PubMed
Google Scholar
Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401. https://doi.org/10.1056/nejmoa0909494.
CAS
Article
PubMed
Google Scholar
Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15. https://doi.org/10.1056/nejmoa0907839.
CAS
Article
PubMed
Google Scholar
Rossi S, Lo Giudice T, De Chiara V, Musella A, Studer V, Motta C, et al. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br J Pharmacol. 2012;165(4):861–9. https://doi.org/10.1111/j.1476-5381.2011.01579.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith PA, Schmid C, Zurbruegg S, Jivkov M, Doelemeyer A, Theil D, et al. Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis. J Neuroimmunol. 2018;318:103–13. https://doi.org/10.1016/j.jneuroim.2018.02.016.
CAS
Article
PubMed
Google Scholar
Zhang J, Zhang ZG, Li Y, Ding X, Shang X, Lu M, et al. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiol Dis. 2015;76:57–66. https://doi.org/10.1016/j.nbd.2015.01.006.
CAS
Article
PubMed
Google Scholar
Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013;328(1–2):9–18. https://doi.org/10.1016/j.jns.2013.02.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Albert C, Mikolajczak J, Liekfeld A, Piper SK, Scheel M, Zimmermann HG, et al. Fingolimod after a first unilateral episode of acute optic neuritis (MOVING)—preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurol. 2020;20(1):75. https://doi.org/10.1186/s12883-020-01645-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
An X, Kezuka T, Usui Y, Matsunaga Y, Matsuda R, Yamakawa N, et al. Suppression of experimental autoimmune optic neuritis by the novel agent fingolimod. J Neuroophthalmol. 2013;33(2):143–8. https://doi.org/10.1097/wno.0b013e31828ea2fc.
Article
PubMed
Google Scholar
Bechet S, O’Sullivan SA, Yssel J, Fagan SG, Dev KK. Fingolimod rescues demyelination in a mouse model of Krabbe’s disease. J Neurosci. 2020;40(15):3104–18. https://doi.org/10.1523/jneurosci.2346-19.2020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell JD, Callagher P, Gardham J, Mitchell C, Dixon M, Addison-Jones R, et al. Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)–a 20-year review: can we do better? Amyotroph Lateral Scler. 2010;11(6):537–41. https://doi.org/10.3109/17482968.2010.495158.
Article
PubMed
Google Scholar
van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and diagnosis of ALS: insights from advances in neurophysiological techniques. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112818.
Article
PubMed
PubMed Central
Google Scholar
Lutz C. Mouse models of ALS: past, present and future. Brain Res. 2018;1693(Pt A):1–10. https://doi.org/10.1016/j.brainres.2018.03.024.
CAS
Article
PubMed
Google Scholar
Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology. 2001;57(7):1282–9. https://doi.org/10.1212/wnl.57.7.1282.
CAS
Article
PubMed
Google Scholar
Lewis CA, Manning J, Rossi F, Krieger C. The neuroinflammatory response in ALS: the roles of microglia and T cells. Neurol Res Int. 2012;2012:803701. https://doi.org/10.1155/2012/803701.
Article
PubMed
PubMed Central
Google Scholar
Troost D, van den Oord JJ, de Jong JM, Swaab DF. Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis. Clin Neuropathol. 1989;8(6):289–94.
CAS
PubMed
Google Scholar
Potenza RL, De Simone R, Armida M, Mazziotti V, Pezzola A, Popoli P, et al. Fingolimod: a disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2016;13(4):918–27. https://doi.org/10.1007/s13311-016-0462-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Berry JD, Paganoni S, Atassi N, Macklin EA, Goyal N, Rivner M, et al. Phase IIa trial of fingolimod for amyotrophic lateral sclerosis demonstrates acceptable acute safety and tolerability. Muscle Nerve. 2017;56(6):1077–84. https://doi.org/10.1002/mus.25733.
CAS
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. AD report 2019. 2019. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 17 Jun 2019.
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008;283(44):29615–9. https://doi.org/10.1074/jbc.r800019200.
CAS
Article
PubMed
PubMed Central
Google Scholar
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–12. https://doi.org/10.1038/nrm2101.
CAS
Article
PubMed
Google Scholar
Pahnke J, Langer O, Krohn M. Alzheimer’s and ABC transporters–new opportunities for diagnostics and treatment. Neurobiol Dis. 2014;72(Pt A):54–60. https://doi.org/10.1016/j.nbd.2014.04.001.
CAS
Article
PubMed
Google Scholar
Pahnke J, Walker LC, Scheffler K, Krohn M. Alzheimer’s disease and blood-brain barrier function—why have anti-beta-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev. 2009;33(7):1099–108. https://doi.org/10.1016/j.neubiorev.2009.05.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70. https://doi.org/10.1111/ene.13439.
CAS
Article
PubMed
Google Scholar
Elsherbini A, Kirov AS, Dinkins MB, Wang G, Qin H, Zhu Z, et al. Association of Abeta with ceramide-enriched astrosomes mediates Abeta neurotoxicity. Acta Neuropathol Commun. 2020;8(1):60. https://doi.org/10.1186/s40478-020-00931-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jesko H, Wencel PL, Wojtowicz S, Strosznajder J, Lukiw WJ, Strosznajder RP. Fingolimod affects transcription of genes encoding enzymes of ceramide metabolism in animal model of Alzheimer’s disease. Mol Neurobiol. 2020;57(6):2799–811. https://doi.org/10.1007/s12035-020-01908-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 2016;16(3):247–53. https://doi.org/10.7861/clinmedicine.16-3-247.
Article
PubMed
PubMed Central
Google Scholar
Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, et al. Fingolimod phosphate attenuates oligomeric amyloid beta-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS One. 2013;8(4):e61988. https://doi.org/10.1371/journal.pone.0061988.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ruiz A, Joshi P, Mastrangelo R, Francolini M, Verderio C, Matteoli M. Testing Abeta toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip. 2014;14(15):2860–6. https://doi.org/10.1039/c4lc00174e.
CAS
Article
PubMed
Google Scholar
Takasugi N, Sasaki T, Ebinuma I, Osawa S, Isshiki H, Takeo K, et al. FTY720/fingolimod, a sphingosine analogue, reduces amyloid-beta production in neurons. PLoS One. 2013;8(5):e64050. https://doi.org/10.1371/journal.pone.0064050.
CAS
Article
PubMed
PubMed Central
Google Scholar
Asle-Rousta M, Kolahdooz Z, Dargahi L, Ahmadiani A, Nasoohi S. Prominence of central sphingosine-1-phosphate receptor-1 in attenuating abeta-induced injury by fingolimod. J Mol Neurosci. 2014;54(4):698–703. https://doi.org/10.1007/s12031-014-0423-3.
CAS
Article
PubMed
Google Scholar
Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al. Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res. 2013;252:415–21. https://doi.org/10.1016/j.bbr.2013.06.016.
CAS
Article
PubMed
Google Scholar
Asle-Rousta M, Kolahdooz Z, Oryan S, Ahmadiani A, Dargahi L. FTY720 (fingolimod) attenuates beta-amyloid peptide (Abeta42)-induced impairment of spatial learning and memory in rats. J Mol Neurosci. 2013;50(3):524–32. https://doi.org/10.1007/s12031-013-9979-6.
CAS
Article
PubMed
Google Scholar
Fukumoto K, Mizoguchi H, Takeuchi H, Horiuchi H, Kawanokuchi J, Jin S, et al. Fingolimod increases brain-derived neurotrophic factor levels and ameliorates amyloid beta-induced memory impairment. Behav Brain Res. 2014;268:88–93. https://doi.org/10.1016/j.bbr.2014.03.046.
CAS
Article
PubMed
Google Scholar
Aytan N, Choi JK, Carreras I, Brinkmann V, Kowall NW, Jenkins BG, et al. Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer’s disease. Sci Rep. 2016;6:24939. https://doi.org/10.1038/srep24939.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carreras I, Aytan N, Choi JK, Tognoni CM, Kowall NW, Jenkins BG, et al. Dual dose-dependent effects of fingolimod in a mouse model of Alzheimer’s disease. Sci Rep. 2019;9(1):10972. https://doi.org/10.1038/s41598-019-47287-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
McManus RM, Finucane OM, Wilk MM, Mills KHG, Lynch MA. FTY720 attenuates infection-induced enhancement of abeta accumulation in APP/PS1 mice by modulating astrocytic activation. J Neuroimmune Pharmacol. 2017;12(4):670–81. https://doi.org/10.1007/s11481-017-9753-6.
Article
PubMed
Google Scholar
van Doorn R, Nijland PG, Dekker N, Witte ME, Lopes-Pinheiro MA, van het Hof B, et al. Fingolimod attenuates ceramide-induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathol. 2012;124(3):397–410. https://doi.org/10.1007/s00401-012-1014-4.
CAS
Article
PubMed
Google Scholar
Kinoshita K, Tada Y, Muroi Y, Unno T, Ishii T. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sci. 2015;137:28–36. https://doi.org/10.1016/j.lfs.2015.07.017.
CAS
Article
PubMed
Google Scholar
Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/s0140-6736(14)61393-3.
CAS
Article
PubMed
Google Scholar
AlDakheel A, Kalia LV, Lang AE. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics. 2014;11(1):6–23. https://doi.org/10.1007/s13311-013-0218-1.
CAS
Article
PubMed
Google Scholar
Ren M, Han M, Wei X, Guo Y, Shi H, Zhang X, et al. FTY720 attenuates 6-OHDA-associated dopaminergic degeneration in cellular and mouse Parkinsonian models. Neurochem Res. 2017;42(2):686–96. https://doi.org/10.1007/s11064-016-2125-4.
CAS
Article
PubMed
Google Scholar
Zhao P, Yang X, Yang L, Li M, Wood K, Liu Q, et al. Neuroprotective effects of fingolimod in mouse models of Parkinson’s disease. FASEB J. 2017;31(1):172–9. https://doi.org/10.1096/fj.201600751r.
CAS
Article
PubMed
Google Scholar
Yao S, Li L, Sun X, Hua J, Zhang K, Hao L, et al. FTY720 inhibits MPP(+)-induced microglial activation by affecting NLRP3 inflammasome activation. J Neuroimmune Pharmacol. 2019;14(3):478–92. https://doi.org/10.1007/s11481-019-09843-4.
Article
PubMed
Google Scholar
Motyl J, Przykaza L, Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology. 2018;135:139–50. https://doi.org/10.1016/j.neuropharm.2018.02.023.
CAS
Article
PubMed
Google Scholar
Vidal-Martinez G, Najera K, Miranda JD, Gil-Tommee C, Yang B, Vargas-Medrano J, et al. FTY720 improves behavior, increases brain derived neurotrophic factor levels and reduces alpha-synuclein pathology in parkinsonian GM2 ± mice. Neuroscience. 2019;411:1–10. https://doi.org/10.1016/j.neuroscience.2019.05.029.
CAS
Article
PubMed
PubMed Central
Google Scholar
Vidal-Martinez G, Vargas-Medrano J, Gil-Tommee C, Medina D, Garza NT, Yang B, et al. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF. J Biol Chem. 2016;291(39):20811–21. https://doi.org/10.1074/jbc.m116.744029.
CAS
Article
PubMed
PubMed Central
Google Scholar
Komnig D, Dagli TC, Habib P, Zeyen T, Schulz JB, Falkenburger BH. Fingolimod (FTY720) is not protective in the subacute MPTP mouse model of Parkinson’s disease and does not lead to a sustainable increase of brain-derived neurotrophic factor. J Neurochem. 2018;147(5):678–91. https://doi.org/10.1111/jnc.14575.
CAS
Article
PubMed
Google Scholar
Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82. https://doi.org/10.1111/epi.12550.
Article
PubMed
Google Scholar
Shorvon SD. The etiologic classification of epilepsy. Epilepsia. 2011;52(6):1052–7. https://doi.org/10.1111/j.1528-1167.2011.03041.x.
Article
PubMed
Google Scholar
Kobau R, Zahran H, Thurman DJ, Zack MM, Henry TR, Schachter SC, et al. Epilepsy surveillance among adults–19 states, Behavioral Risk Factor Surveillance System, 2005. MMWR Surveill Summ. 2008;57(6):1–20.
PubMed
Google Scholar
Brackhan M, Bascunana P, Postema JM, Ross TL, Bengel FM, Bankstahl M, et al. Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult. J Nucl Med. 2016;57(8):1302–8. https://doi.org/10.2967/jnumed.116.172494.
CAS
Article
PubMed
Google Scholar
Brackhan M, Bascunana P, Ross TL, Bengel FM, Bankstahl JP, Bankstahl M. [(18) F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Epilepsia. 2018;59(3):617–26. https://doi.org/10.1111/epi.14009.
CAS
Article
PubMed
Google Scholar
Bascunana P, Gendron T, Sander K, Jahreis I, Polyak A, Ross TL, et al. Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers. Epilepsia. 2019;60(11):2325–33. https://doi.org/10.1111/epi.16353.
CAS
Article
PubMed
Google Scholar
Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol. 2014;813:109–22. https://doi.org/10.1007/978-94-017-8914-1_9.
Article
PubMed
PubMed Central
Google Scholar
Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflamm. 2017;14(1):10. https://doi.org/10.1186/s12974-016-0786-1.
CAS
Article
Google Scholar
Gao F, Liu Y, Li X, Wang Y, Wei D, Jiang W. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav. 2012;103(2):187–96. https://doi.org/10.1016/j.pbb.2012.08.025.
CAS
Article
PubMed
Google Scholar
Gao F, Gao Y, Meng F, Yang C, Fu J, Li Y. The sphingosine 1-phosphate analogue FTY720 alleviates seizure-induced overexpression of P-glycoprotein in rat hippocampus. Basic Clin Pharmacol Toxicol. 2018;123(1):14–20. https://doi.org/10.1111/bcpt.12973.
CAS
Article
PubMed
Google Scholar
Pitsch J, Kuehn JC, Gnatkovsky V, Muller JA, van Loo KMJ, de Curtis M, et al. Anti-epileptogenic and anti-convulsive effects of fingolimod in experimental temporal lobe epilepsy. Mol Neurobiol. 2019;56(3):1825–40. https://doi.org/10.1007/s12035-018-1181-y.
CAS
Article
PubMed
Google Scholar
Gol M, Ghorbanian D, Hassanzadeh S, Javan M, Mirnajafi-Zadeh J, Ghasemi-Kasman M. Fingolimod enhances myelin repair of hippocampus in pentylenetetrazol-induced kindling model. Eur J Pharm Sci. 2017;96:72–83. https://doi.org/10.1016/j.ejps.2016.09.016.
CAS
Article
PubMed
Google Scholar
Leo A, Citraro R, Amodio N, De Sarro C, Gallo Cantafio ME, Constanti A, et al. Fingolimod exerts only temporary antiepileptogenic effects but longer-lasting positive effects on behavior in the WAG/Rij rat absence epilepsy model. Neurotherapeutics. 2017;14(4):1134–47. https://doi.org/10.1007/s13311-017-0550-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novak MJ, Tabrizi SJ. Huntington’s disease: clinical presentation and treatment. Int Rev Neurobiol. 2011;98:297–323. https://doi.org/10.1016/b978-0-12-381328-2.00013-4.
Article
PubMed
Google Scholar
Group HsDCR. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83. https://doi.org/10.1016/0092-8674(93)90585-e.
Article
Google Scholar
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel J-PG, Faull RL. The neuropathology of Huntington’s disease. In: Nguyen HHP, Cenci MA, editors. Behavioral neurobiology of Huntington’s disease and Parkinson’s disease. Heidelberg: Springer; 2015. p. 33–80.
Google Scholar
Wyant KJ, Ridder AJ, Dayalu P. Huntington’s disease-update on treatments. Curr Neurol Neurosci Rep. 2017;17(4):33. https://doi.org/10.1007/s11910-017-0739-9.
CAS
Article
PubMed
Google Scholar
Wood H. Neurodegenerative disease: Could fingolimod provide cognitive benefits in patients with Huntington disease? Nat Rev. 2015;11(8):426. https://doi.org/10.1038/nrneurol.2015.117.
Article
Google Scholar
Di Pardo A, Amico E, Favellato M, Castrataro R, Fucile S, Squitieri F, et al. FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum Mol Genet. 2014;23(9):2251–65. https://doi.org/10.1093/hmg/ddt615.
CAS
Article
PubMed
Google Scholar
Miguez A, Garcia-Diaz Barriga G, Brito V, Straccia M, Giralt A, Gines S, et al. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet. 2015;24(17):4958–70. https://doi.org/10.1093/hmg/ddv218.
CAS
Article
PubMed
Google Scholar
Liyanage VR, Rastegar M. Rett syndrome and MeCP2. Neuromol Med. 2014;16(2):231–64. https://doi.org/10.1007/s12017-014-8295-9.
CAS
Article
Google Scholar
Bienvenu T, Carrie A, de Roux N, Vinet MC, Jonveaux P, Couvert P, et al. MECP2 mutations account for most cases of typical forms of Rett syndrome. Hum Mol Genet. 2000;9(9):1377–84. https://doi.org/10.1093/hmg/9.9.1377.
CAS
Article
PubMed
Google Scholar
Li W, Pozzo-Miller L. BDNF deregulation in Rett syndrome. Neuropharmacology. 2014;76(Pt C):737–46. https://doi.org/10.1016/j.neuropharm.2013.03.024.
CAS
Article
PubMed
Google Scholar
Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, et al. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 2012;109(35):14230–5. https://doi.org/10.1073/pnas.1206093109.
Article
PubMed
Google Scholar
Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18(S2):73–88. https://doi.org/10.1684/epd.2016.0844.
Article
PubMed
Google Scholar
Mole SE, Williams RE. Neuronal Ceroid-Lipofuscinoses. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al, editors. GeneReviews((R)). Seattle; 1993.
Cooper JD, Tarczyluk MA, Nelvagal HR. Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta. 2015;1852(10 Pt B):2256–61. https://doi.org/10.1016/j.bbadis.2015.05.014.
CAS
Article
PubMed
Google Scholar
Chabrol B, Caillaud C, Minassian B. Neuronal ceroid lipofuscinoses. Handb Clin Neurol. 2013;113:1701–6. https://doi.org/10.1016/b978-0-444-59565-2.00038-1.
Article
PubMed
Google Scholar
Groh J, Berve K, Martini R. Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol Ther. 2017;25(8):1889–99. https://doi.org/10.1016/j.ymthe.2017.04.021.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–84. https://doi.org/10.1016/s0140-6736(15)01314-8.
CAS
Article
PubMed
Google Scholar
Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–56. https://doi.org/10.1016/s1474-4422(14)70049-3.
CAS
Article
PubMed
Google Scholar
Kappos L, O’Connor P, Radue EW, Polman C, Hohlfeld R, Selmaj K, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–91. https://doi.org/10.1212/wnl.0000000000001462.
CAS
Article
PubMed
PubMed Central
Google Scholar
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, et al. Sphingosine 1-phosphate receptors and metabolic enzymes as druggable targets for brain diseases. Front Pharmacol. 2019;10:807. https://doi.org/10.3389/fphar.2019.00807.
CAS
Article
PubMed
PubMed Central
Google Scholar