Skip to main content
Log in

Targeting toxic forms of α-synuclein with immunotherapy could alter the progression of Parkinson’s disease

  • Practical Issues and Updates
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

α-Synuclein is a presynaptic protein typically involved in synaptic regulation. However, it may form toxic aggregates and propagate in the CNS via cell-to-cell transmission, which have been identified as a key part in the pathophysiology of Parkinson’s disease (PD). Multiple strategies are being investigated to mitigate this; these include passive and active immunization against α-synuclein, among other immunotherapies and/or other α-synuclein-targeting compounds. Ultimately, these techniques aim to lessen neurotoxicity by increasing α-synuclein clearance and reducing the accumulation of toxic α-synuclein aggregates, potentially slowing the progression of PD through disease-modifying effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vijayakumar D, Jankovic J. Slowing Parkinson’s disease progression with vaccination and other immunotherapies. CNS Drugs. 2022;36(4):327–43.

    Article  CAS  PubMed  Google Scholar 

  2. Hadi F, Akrami H, Totonchi M, et al. α-Synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson’s disease. J Neurochem. 2020;157:727–51.

    Article  Google Scholar 

  3. Schwab AD, Thurston MJ, Machhi J, et al. Immunotherapy for Parkinson’s disease. Neurobiol Dis. 2020;137:104760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Gao G, Duan C, et al. Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed Pharmacother. 2019;115: 108843.

    Article  CAS  PubMed  Google Scholar 

  5. Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord. 2013;28(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  6. Duffy MF, Collier TJ, Patterson JR. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation. 2018;15:1–18.

    Google Scholar 

  7. Tan EK, Chao YX, West A, et al. Parkinson disease and the immune system: associations, mechanisms and therapeutics. Nat Rev Neurol. 2020;16:303–18.

    Article  PubMed  Google Scholar 

  8. Wong YC, Holzbaur EL. Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci. 2015;128(7):1259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Games D, Valera E, Spencer B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci. 2014;34(28):9441–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alam P, Bousset L, Melki R, et al. α-Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem. 2019;150:522–34.

    Article  CAS  PubMed  Google Scholar 

  11. Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J Parkinsons Dis. 2015;5:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearce MM. Prion-like transmission of pathogenic protein aggregates in genetic models of neurodegenerative disease. Curr Opin Genet Dev. 2017;44:149–55.

    Article  CAS  PubMed  Google Scholar 

  13. Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370:50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lashuel HA, Overk CR, Oueslati A, et al. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Price DL, Koike MA, Khan A, et al. The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep. 2018;8(1):16165.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pagan F, Hebron M, Valadez EH. Nilotinib effects in Parkinson’s disease and dementia with lewy bodies. J Parkinsons Dis. 2016;6(3):503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simuni T, Fiske B, Merchant K. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol. 2021;78(3):312–20.

    Article  PubMed  Google Scholar 

  19. Sahin C, Lorenzen N, Lemminger L, et al. Antibodies against the C-terminus of alpha-synuclein modulate its fibrillation. Biophys Chem. 2017;220:34–41.

    Article  CAS  PubMed  Google Scholar 

  20. Schofield DJ, Irving L, Calo L. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol Dis. 2019;132: 104582.

    Article  CAS  PubMed  Google Scholar 

  21. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Folke J, Ferreira N, Brudek T, et al. Passive immunization in alpha-synuclein preclinical animal models. Biomolecules. 2022;12(2):168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jankovic J, Goodman I, Safirstein B. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75(10):1206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pagano G, Boess FG, Taylor KI. A phase II study to evaluate the safety and efficacy of prasinezumab in early Parkinson’s disease (PASADENA): rationale, design, and baseline data. Front Neurol. 2021;12:705407.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brys M, Fanning L, Hung S. Randomized phase I clinical trial of anti–α-synuclein antibody BIIB054. Mov Disord. 2019;34(8):1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fjord-Larsen L, Thougaard A, Wegener KM, et al. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs. 2021;13(1):1994690.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Volc D, Poewe W, Kutzelnigg A. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial. Lancet Neurol. 2020;19(7):591–600.

    Article  CAS  PubMed  Google Scholar 

  28. Poewe W, Di V, Seppi K. Safety and tolerability of active immunotherapy targeting α-synuclein with PD03A in patients with early Parkinson’s disease: a randomized, placebo-controlled, phase 1 study. J Parkinsons Dis. 2021;11(3):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nimmo JT, Verma A, Dodart JC, et al. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: potential development for immunotherapy. Alzheimer’s Res Ther. 2020;12(1):159.

    Article  CAS  Google Scholar 

  30. Magistrelli L, Comi C. Beta2-adrenoceptor agonists in Parkinson’s disease and other synucleinopathies. J Neuroimmune Pharmacol. 2020;15(1):74–81.

    Article  PubMed  Google Scholar 

  31. Wang W, Nguyen LTT, Burlak C. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc Natl Acad Sci USA. 2016;113(34):9587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van der Perren A, Macchi F, Toelen J, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an alpha-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36(3):1559–68.

    Article  PubMed  Google Scholar 

  33. Yun SP, Kam TI, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Paik.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Authorship and conflict of interest

J. Paik is a salaried employee of Adis International Ltd/Springer Nature and declares no relevant conflicts of interest. All authors contributed to the review and are responsible for the article content.

Ethics approval, Consent to participate, Consent for publication, Availability of data and material, Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paik, J. Targeting toxic forms of α-synuclein with immunotherapy could alter the progression of Parkinson’s disease. Drugs Ther Perspect 38, 467–471 (2022). https://doi.org/10.1007/s40267-022-00950-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-022-00950-6

Navigation