Skip to main content

Immunotherapy of Parkinson’s Disease

  • Protocol
  • First Online:
Immunotherapy and Biomarkers in Neurodegenerative Disorders

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It elicits a broad range of debilitating motor and as well as non-motor symptoms, both of which can lead to serious disability. There is currently no available agent with disease modifying properties. Immunotherapy is increasingly being investigated as a disease modifying treatment for PD based on our improved understanding of the pathophysiology of the disease. Current evidence points to a causal role of misfolded alpha-synuclein (α-syn) in the development and progression of PD and it has therefore become a primary focus for immunotherapy. Today, two principal approaches are being pursued: active and passive immunization. This chapter first addresses progress in active and passive immunotherapeutic approaches targeting α-syn for Parkinson’s disease in animal models. We then discuss clinical progress of α-syn immunotherapy including ongoing clinical trials. Finally, we address challenges and future perspectives for PD immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-syn:

Alpha-synuclein

β-syn:

Beta-synuclein

DA:

Dopamine

DLB:

Dementia with Lewy bodies

DOPAC:

3,4-Dihydroxyphenylacetic acid

GCI:

Glial cytoplasmatic inclusions

h:

Human

HVA:

Homovanillic acid

LB:

Lewy body

mAb:

Monoclonal antibody

MSA:

Multiple system atrophy

PD:

Parkinson’s disease

PDD:

Parkinson’s disease dementia

REM:

Rapid eye movement

MWM:

Morris water maze

References

  1. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127

    Article  CAS  PubMed  Google Scholar 

  2. Meissner WG, Frasier M, Gasser T et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393

    Article  CAS  PubMed  Google Scholar 

  3. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14(2):223–236, discussion 222

    Article  PubMed  Google Scholar 

  4. Dubois B, Tolosa E, Katzenschlager R et al (2012) Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord 27(10):1230–1238

    Article  CAS  PubMed  Google Scholar 

  5. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  6. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  7. Kosaka K (1978) Lewy bodies in cerebral cortex, report of three cases. Acta Neuropathol 42(2):127–134

    Article  CAS  PubMed  Google Scholar 

  8. Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792(7):730–740

    Article  CAS  PubMed  Google Scholar 

  9. McGeer PL, McGeer EG (2008) The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol 212(2):235–238

    Article  CAS  PubMed  Google Scholar 

  10. Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-a beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475

    Article  CAS  PubMed  Google Scholar 

  11. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815

    CAS  PubMed  Google Scholar 

  12. Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of CDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fortin DL, Troyer MD, Nakamura K et al (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24(30):6715–6723

    Article  CAS  PubMed  Google Scholar 

  14. George JM, Jin H, Woods WS et al (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372

    Article  CAS  PubMed  Google Scholar 

  15. Murphy DD, Rueter SM, Trojanowski JQ et al (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220

    CAS  PubMed  Google Scholar 

  16. Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edwards TL, Scott WK, Almonte C et al (2010) Genome-wide association study confirms SNPS in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gandhi S, Wood NW (2010) Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci 13(7):789–794

    Article  CAS  PubMed  Google Scholar 

  19. Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307

    Article  CAS  PubMed  Google Scholar 

  20. Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  22. McNeill A, Duran R, Hughes DA et al (2012) A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatry 83(8):853–854

    Article  PubMed  PubMed Central  Google Scholar 

  23. Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    Article  CAS  PubMed  Google Scholar 

  24. Eriksen JL, Dawson TM, Dickson DW et al (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson’s disease. Neuron 40(3):453–456

    Article  CAS  PubMed  Google Scholar 

  25. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    Article  CAS  PubMed  Google Scholar 

  28. Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363

    Article  CAS  PubMed  Google Scholar 

  29. Wu DC, Teismann P, Tieu K et al (2003) Nadph oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  31. Shavali S, Combs CK, Ebadi M (2006) Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res 31(1):85–94

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    Article  CAS  PubMed  Google Scholar 

  33. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  34. Dickson DW, Fujishiro H, Orr C et al (2009) Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 15(Suppl 3):S1–S5

    Article  PubMed  Google Scholar 

  35. Lansbury PT Jr, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Genet Dev 12(3):299–306

    Article  CAS  PubMed  Google Scholar 

  36. Sacchetti B, Baldi E, Lorenzini CA et al (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A 99(12):8406–8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  38. Ross OA, Braithwaite AT, Skipper LM et al (2008) Genomic investigation of alpha-synuclein multiplication and Parkinsonism. Ann Neurol 63(6):743–750

    Article  CAS  PubMed  Google Scholar 

  39. Fleming SM, Salcedo J, Fernagut PO et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440

    Article  CAS  PubMed  Google Scholar 

  40. Fleming SM, Tetreault NA, Mulligan CK et al (2008) Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28(2):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932–942

    Article  CAS  PubMed  Google Scholar 

  42. Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269

    Article  CAS  PubMed  Google Scholar 

  43. Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59(11):1093–1102

    Article  CAS  PubMed  Google Scholar 

  44. Lace G, Savva GM, Forster G et al (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132(Pt 5):1324–1334

    Article  CAS  PubMed  Google Scholar 

  45. Jellinger KA, Kovacs GG (2011) Clinico-pathological correlations in neurodegeneration. Acta Neuropathol 122(2):115–116

    Article  PubMed  Google Scholar 

  46. Lim KL, Zhang CW (2013) Molecular events underlying Parkinson’s disease – an interwoven tapestry. Front Neurol 4:33

    Article  PubMed  PubMed Central  Google Scholar 

  47. Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28(1):31–40

    Article  CAS  PubMed  Google Scholar 

  48. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    Article  CAS  PubMed  Google Scholar 

  49. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  PubMed  Google Scholar 

  50. Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luk CH, Wallis JD (2009) Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. J Neurosci 29(23):7526–7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Watts JC, Giles K, Oehler A et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Recasens A, Dehay B, Bove J et al (2014) Lewy body extracts from parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362

    Article  CAS  PubMed  Google Scholar 

  55. Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active abeta immunotherapy with cad106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604

    Article  CAS  PubMed  Google Scholar 

  56. Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  PubMed  Google Scholar 

  57. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bae EJ, Lee HJ, Rockenstein E et al (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Games D, Valera E, Spencer B et al (2014) Reducing c-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ghochikyan A, Petrushina I, Davtyan H et al (2014) Immunogenicity of epitope vaccines targeting different b cell antigenic determinants of human alpha-synuclein: feasibility study. Neurosci Lett 560:86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindstrom V, Fagerqvist T, Nordstrom E et al (2014) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (thy-1)-h[a30p] alpha-synuclein mice. Neurobiol Dis 69:134–143

    Article  PubMed  Google Scholar 

  62. Mandler M, Valera E, Rockenstein E et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868

    Article  CAS  PubMed  Google Scholar 

  64. Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6(4):e19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nasstrom T, Goncalves S, Sahlin C et al (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6(10):e27230

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wilcock DM, Colton CA (2008) Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis 15(4):555–569

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M et al (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17(5):508–520

    Article  CAS  PubMed  Google Scholar 

  68. Benner EJ, Banerjee R, Reynolds AD et al (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3(1), e1376

    Article  PubMed  PubMed Central  Google Scholar 

  69. Reynolds AD, Stone DK, Hutter JA et al (2010) Regulatory t cells attenuate th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Guajardo V, Barnum CJ, Tansey MG et al (2013) Neuroimmunological processes in Parkinson’s disease and their relation to alpha-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139

    Article  CAS  PubMed  Google Scholar 

  71. Reynolds AD, Stone DK, Mosley RL et al (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by cd4+ t cell subsets. J Immunol 182(7):4137–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanchez-Guajardo V, Annibali A, Jensen PH et al (2013) Alpha-synuclein vaccination prevents the accumulation of Parkinson disease-like pathologic inclusions in striatum in association with regulatory t cell recruitment in a rat model. J Neuropathol Exp Neurol 72(7):624–645

    Article  CAS  PubMed  Google Scholar 

  73. Wiessner C, Wiederhold KH, Tissot AC et al (2011) The second-generation active abeta immunotherapy cad106 reduces amyloid accumulation in app transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331

    Article  CAS  PubMed  Google Scholar 

  74. Schneeberger A, Mandler M, Mattner F et al (2010) Affitome(r) technology in neurodegenerative diseases: the doubling advantage. Hum Vaccin 6(11):948–952

    Article  CAS  PubMed  Google Scholar 

  75. Schneeberger A, Mandler M, Mattner F et al (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S11–S13

    Article  PubMed  Google Scholar 

  76. Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252

    Article  CAS  PubMed  Google Scholar 

  77. Hashimoto M, Rockenstein E, Mante M et al (2001) Beta-synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2):213–223

    Article  CAS  PubMed  Google Scholar 

  78. Hashimoto M, Kawahara K, Bar-On P et al (2004) The role of alpha-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24(3):343–352

    Article  CAS  PubMed  Google Scholar 

  79. Biere AL, Wood SJ, Wypych J et al (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275(44):34574–34579

    Article  CAS  PubMed  Google Scholar 

  80. Fan Y, Limprasert P, Murray IV et al (2006) Beta-synuclein modulates alpha-synuclein neurotoxicity by reducing alpha-synuclein protein expression. Hum Mol Genet 15(20):3002–3011

    Article  CAS  PubMed  Google Scholar 

  81. Lee HJ, Khoshaghideh F, Patel S et al (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896

    Article  CAS  PubMed  Google Scholar 

  82. Tran HT, Chung CH, Iba M et al (2014) Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep 7(6):2054–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fagerqvist T, Lindstrom V, Nordstrom E et al (2013) Monoclonal antibodies selective for alpha-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and alpha-synuclein transgenic mice with the disease-causing a30p mutation. J Neurochem 126(1):131–144

    Article  CAS  PubMed  Google Scholar 

  84. Lindstrom V, Ihse E, Fagerqvist T et al (2014) Immunotherapy targeting alpha-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6(2):141–153

    Article  PubMed  Google Scholar 

  85. Leber P (1997) Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis Assoc Disord 11(Suppl 5):S10–S21, Discussion S37-19

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Schneeberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schneeberger, A., Hendrix, S., Mandler, M. (2016). Immunotherapy of Parkinson’s Disease. In: Ingelsson, M., Lannfelt, L. (eds) Immunotherapy and Biomarkers in Neurodegenerative Disorders. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3560-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3560-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3558-1

  • Online ISBN: 978-1-4939-3560-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics