Skip to main content
Log in

Minimize drug-induced hyperkalaemia by increasing awareness and using preventative strategies

  • Drug Reactions and Interactions
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Many commonly used drugs have the potential to cause hyperkalaemia via a variety of mechanisms. An increased awareness of the potential for drugs to induce hyperkalaemia, together with the use of preventative strategies, may minimize the risk of drug-induced hyperkalaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sood MM, Sood AR, Richardson R. Emergency management and commonly encountered outpatient scenarios in patients with hyperkalemia. Mayo Clin Proc. 2007;82(12):1553–61.

    Article  PubMed  Google Scholar 

  2. Evans KJ, Greenberg A. Hyperkalemia: a review. J Intensive Care Med. 2005;20(5):272–90.

    Article  PubMed  Google Scholar 

  3. Ben Salem C, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. Drug Saf. 2014;37(9):677–92.

    Article  CAS  PubMed  Google Scholar 

  4. Perazella MA. Drug-induced hyperkalemia: old cuplrits and new offenders. Am J Med. 2000;109(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  5. Passare G, Viitanen M, Törring O, et al. Sodium and potassium disturbances in the elderly: prevalence and association with drug use. Clin Drug Investig. 2004;24(9):535–44.

    Article  CAS  PubMed  Google Scholar 

  6. Raebel MA. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc Ther. 2012;30(3):e156–66.

    Article  CAS  PubMed  Google Scholar 

  7. Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  8. Miltiadous G, Mikhailidis DP, Elisaf M. Acid-base and electrolyte abnormalities observed in patients receiving cardiovascular drugs. J Cardiovasc Pharmacol Ther. 2003;8(4):267–76.

    Article  CAS  PubMed  Google Scholar 

  9. Roscioni SS, de Zeeuw D, Bakker SJ, et al. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy. Nat Rev Nephrol. 2012;8(12):691–9.

    Article  CAS  PubMed  Google Scholar 

  10. White WB, Bresalier R, Kaplan AP, et al. Safety and tolerability of the direct renin inhibitor aliskiren: a pooled analysis of clinical experience in more than 12,000 patients with hypertension. J Clin Hypertens (Greenwich). 2010;12(10):765–75.

    Article  CAS  PubMed Central  Google Scholar 

  11. Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    Article  CAS  PubMed  Google Scholar 

  12. Weir MR, Bush C, Anderson DR, et al. Antihypertensive efficacy, safety, and tolerability of the oral direct renin inhibitor aliskiren in patients with hypertension: a pooled analysis. J Am Soc Hypertens. 2007;1(4):264–77.

    Article  PubMed  Google Scholar 

  13. Harel Z, Gilbert C, Wald R, et al. The effect of combination treatment with aliskiren and blockers of the renin-angiotensin system on hyperkalaemia and acute kidney injury: systematic review and meta-analysis. BMJ. 2012;344:e42.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Appel GB, Radhakrishnan J, Avram MM, et al. Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care. 2003;26(5):1402–7.

    Article  PubMed  Google Scholar 

  15. Miao Y, Dobre D, Heerspink HJ, et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia. 2011;54(1):44–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rangel EB. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert Opin Drug Metab Toxicol. 2012;8(12):1531–48.

    Article  CAS  PubMed  Google Scholar 

  17. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351(6):585–92.

    Article  CAS  PubMed  Google Scholar 

  18. Oster JR, Singer I, Fishman LM. Heparin-induced aldosterone suppression and hyperkalemia. Am J Med. 1995;98(6):575–86.

    Article  CAS  PubMed  Google Scholar 

  19. Gheno G, Cinetto L, Savarino C, et al. Variations of serum potassium level and risk of hyperkalemia in inpatients receiving low-molecular-weight heparin. Eur J Clin Pharmacol. 2003;59(5–6):373–7.

    Article  CAS  PubMed  Google Scholar 

  20. Koren-Michowitz M, Avni B, Michowitz Y, et al. Early onset of hyperkalemia in patients treated with low molecular weight heparin: a prospective study. Pharmacoepidemiol Drug Saf. 2004;13(5):299–302.

    Article  CAS  PubMed  Google Scholar 

  21. Harirforoosh S, Jamali F. Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf. 2009;8(6):669–81.

    Article  CAS  PubMed  Google Scholar 

  22. Lafrance JP, Miller DR. Dispensed selective and nonselective nonsteroidal anti-inflammatory drugs and the risk of moderate to severe hyperkalemia: a nested case-control study. Am J Kidney Dis. 2012;60(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  23. Aljadhey H, Tu W, Hansen RA, et al. Risk of hyperkalemia associated with selective COX-2 inhibitors. Pharmacoepidemiol Drug Saf. 2010;19(11):1194–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Funder JW. Eplerenone: hypertension, heart failure and the importance of mineralocorticoid receptor blockade. Future Cardiol. 2006;2(5):535–41.

    Article  PubMed  Google Scholar 

  25. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  26. Pitt B, Bakris G, Ruilope LM, et al. Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation. 2008;118(16):1643–50.

    Article  CAS  PubMed  Google Scholar 

  27. Buff DD, Aboal AA. Pentamidine-associated renal dysfunction and hyperkalemia. Am J Med. 1990;88(5):552.

    Article  CAS  PubMed  Google Scholar 

  28. Quan KC, Kahana L. Clinical experience with the diuretic effects of triamterene alone and combined with hydrochlorothiazide. Curr Ther Res Clin Exp. 1964;6:27–34.

    CAS  PubMed  Google Scholar 

  29. Perazella MA. Trimethoprim-induced hyperkalaemia: clinical data, mechanism, prevention and management. Drug Saf. 2000;22(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  30. ECC Committee, Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005;112(24 Suppl):IV1–203.

    Google Scholar 

  31. Chapagain A, Ashman N. Hyperkalaemia in the age of aldosterone antagonism. QJM. 2012;105(11):1049–57.

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee A, Stoica C, Walia A. Acute hyperkalemia as a complication of intravenous therapy with espilon-aminocaproic acid. J Clin Anesth. 2011;23(7):565–8.

    Article  PubMed  Google Scholar 

  33. Giovacchini G, Nicolas G, Fredidank H, et al. Effect of amino acid infusion on potassium serum levels in neuroendocrine tumour patients treated with targeted radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2011;38(9):1675–82.

    Article  CAS  PubMed  Google Scholar 

  34. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med. 1972;130(5):778–80.

    Article  CAS  PubMed  Google Scholar 

  35. Brass EP, Thompson WL. Drug-induced electrolyte abnormalities. Drugs. 1982;24(3):207–28.

    Google Scholar 

  36. Swenson ER. Severe hyperkalemia as a complication of timolol, a topically applied beta-adrenergic antagonist. Arch Intern Med. 1986;146(6):1220–1.

    Article  CAS  PubMed  Google Scholar 

  37. McCauley J, Murray J, Jordan M, et al. Labetalol-induced hyperkalemia in renal transplant recipients. Am J Nephrol. 2002;22(4):347–51.

    Article  PubMed  Google Scholar 

  38. Sica DA. Antihypertensive therapy and its effects on potassium homeostasis. J Clin Hypertens (Greenwich). 2006;8(1):67–73.

    Article  CAS  Google Scholar 

  39. Freed MI, Rastegar A, Bia MJ. Effects of calcium channel blockers on potassium homeostasis. Yale J Biol Med. 1991;64(2):177–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Manini AF, Nelson LS, Hoffman RS. Prognostic utility of serum potassium in chronic digoxin toxicity: a case-control study. Am J Cardiovasc Drugs. 2011;11(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tobita K, Kohno T. Case of hyperkalemia after the administration of hypertonic mannitol during craniotomy [in Japanese]. Masui. 2010;59(5):641–4.

    PubMed  Google Scholar 

  42. Martyn JA, Richtseld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.

    Article  CAS  PubMed  Google Scholar 

  43. Thiele A, Rehman HU. Hyperkalemia caused by penicillin. Am J Med. 2008;121(8):e1–2.

    Article  CAS  PubMed  Google Scholar 

  44. Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009;96(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Singhapricha T, Memarzadeh M, et al. Storage age of transfused red blood cells during liver transplantation and its intraoperative and postoperative effects. World J Surg. 2012;36(10):2436–42.

    Article  PubMed  Google Scholar 

Download references

Disclosure

This article was adapted from Drug Safety 2014;37(9):677–92 [3] by salaried/contracted employees of Adis/Springer, and was not supported by any external funding.

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adis Medical Writers. Minimize drug-induced hyperkalaemia by increasing awareness and using preventative strategies. Drugs Ther Perspect 31, 28–33 (2015). https://doi.org/10.1007/s40267-014-0171-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-014-0171-z

Keywords

Navigation