Skip to main content
Log in

Pharmacokinetic drug interactions are unlikely when sodium–glucose cotransporters type 2 inhibitors are used to treat type 2 diabetes mellitus

  • Drug Reactions & Interactions
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Sodium–glucose cotransporters type 2 (SGLT2) inhibitors (e.g. dapagliflozin, canagliflozin and empagliflozin) are a new class of oral glucose-lowering agents. The pharmacokinetic profile and metabolic pathways of these agents suggest that their potential for pharmacokinetic interactions with other drugs is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci. 2011;32(2):63–71.

    Article  PubMed  CAS  Google Scholar 

  2. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium–glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–31.

    Article  PubMed  CAS  Google Scholar 

  3. Scheen AJ. Drug–drug interactions with sodium–glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus. Clinical Pharmacokinet. 2014;53(4):295–304.

    Article  CAS  Google Scholar 

  4. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.

    Article  PubMed  Google Scholar 

  5. Scheen AJ. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol. 2014;10(5):647–63.

    Article  PubMed  CAS  Google Scholar 

  6. Plosker GL. Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72(17):2289–312.

    Article  PubMed  CAS  Google Scholar 

  7. Kasichayanula S, Liu X, Lacreta F, et al. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium–glucose co-transporter type 2. Clin Pharmacokinet. 2014;53(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  8. Elkinson S, Scott LJ. Canagliflozin: first global approval. Drugs. 2013;73(9):979–88.

    Article  PubMed  CAS  Google Scholar 

  9. Lamos EM, Younk LM, Davis SN. Canagliflozin, an inhibitor of sodium–glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug Metab Toxicol. 2013;9(6):763–75.

    Article  PubMed  CAS  Google Scholar 

  10. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Seman L, Macha S, Nehmiz G, et al. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Drug Dev. 2013;2(2):152–61.

    Article  Google Scholar 

  12. Kasichayanula S, Liu X, Shyu WC, et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium–glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab. 2011;13(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  13. Imamura A, Kusunoki M, Ueda S, et al. Impact of voglibose on the pharmacokinetics of dapagliflozin in Japanese patients with type 2 diabetes. Diabetes Ther. 2013;4(1):41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Macha S, Dieterich S, Mattheus M, et al. Pharmacokinetics of empagliflozin, a sodium glucose cotransporter-2 (SGLT2) inhibitor, and metformin following co-administration in healthy volunteers. Int J Clin Pharmacol Ther. 2013;51(2):132–40.

    Article  PubMed  CAS  Google Scholar 

  15. Macha S, Mattheus M, Pinnetti S, et al. Pharmacokinetics of empagliflozin, a sodium glucose cotransporter 2 inhibitor, and glimepiride following co-administration in healthy volunteers: a randomised, open-label, crossover study. Diab Res Clin Metab. 2012;1:1–7.

    Google Scholar 

  16. Brand T, Macha S, Mattheus M, et al. Pharmacokinetics of empagliflozin, a sodium glucose cotransporter-2 (SGLT-2) inhibitor, coadministered with sitagliptin in healthy volunteers. Adv Ther. 2012;29(10):889–99.

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich C, Metzmann K, Rose P, et al. A randomized, open- label, crossover study to evaluate the pharmacokinetics of empagliflozin and linagliptin after coadministration in healthy male volunteers. Clin Ther. 2013;35(1):A33–42.

    Article  PubMed  CAS  Google Scholar 

  18. Devineni D, Sarich TC, Wexler D et al. Effects of canagliflozin on the pharmacokinetics (PK) and pharmacodynamics (PD) of metformin and glyburide [abstract no. 2268-PO 2011]. In: American Diabetes Association 71st Scientific Sessions; 24–28 Jun 2011; San Diego (CA).

  19. Devineni D et al. Lack of clinically meaningful interaction between canagliflozin, a sodium glucose co-transporter 2 inhibitor, and digoxin or warfarin in healthy subjects [poster]. In: 2012 Annual Meeting of the American College of Clinical Pharmacology; 23–25 Sep 2012; San Diego (CA).

  20. Giessmann T, Heise T, Macha S, et al. Lack of interaction between the sodium glucose cotransporter-2 inhibitor empagli- flozin and hydrochlorothiazide or torasemide in patients with T2DM [abstract no. 2440-PO]. Diabetes. 2012;61(Suppl):A614.

    Google Scholar 

  21. Macha S, Lang B, Pinnetti S, et al. Lack of pharmacokinetic interaction between the sodium glucose cotransporter-2 (SGLT-2) inhibitor empagliflozin and simvastatin in healthy volunteers [abstract no. PCS-33-7]. J Diabetes Investig. 2012;3(Suppl 1):228.

    Google Scholar 

  22. Macha S, Rose P, Mattheus M, et al. Lack of drug–drug interaction between empagliflozin, a sodium glucose cotransporter 2 inhibitor, and warfarin in healthy volunteers. Diabetes Obes Metab. 2013;24(15):316–23.

    Article  Google Scholar 

  23. Macha S, Sennewald R, Rose P, et al. Lack of clinically relevant drug–drug interaction between empagliflozin, a sodium glucose cotransporter 2 inhibitor, and verapamil, ramipril, or digoxin in healthy volunteers. Clin Ther. 2013;35(3):226–35.

    Article  PubMed  CAS  Google Scholar 

  24. Kasichayanula S, Chang M, Liu X, et al. Lack of pharmacokinetic interactions between dapagliflozin and simvastatin, valsartan, warfarin, or digoxin. Adv Ther. 2012;29(2):163–77.

    Article  PubMed  CAS  Google Scholar 

  25. InvokanaTM (canagliflozin) tablets, for oral use: US prescribing information. Titusville (NJ): Janssen Pharmaceuticals Inc., 2014.

  26. Kasichayanula S, Liu X, Griffen SC, et al. Effects of rifampin and mefenamic acid on the pharmacokinetics and pharmacodynamics of dapagliflozin. Diabetes Obes Metab. 2013;15(3):280–3.

    Article  PubMed  CAS  Google Scholar 

  27. Devineni D, Curtin CR, Polidori D, et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol. 2013;53(6):601–10.

    Article  PubMed  Google Scholar 

  28. Macha S, Mattheus M, Pinnetti S, et al. Effect of empagliflozin on the steady-state pharmacokinetics of ethinylestradiol and levonorgestrel in healthy female volunteers. Clin Drug Investig. 2013;20(33):351–7.

    Article  Google Scholar 

  29. Skee D, Shalayda K, Vandebosch A et al. The effects of multiple doses of canagliflozin on the pharmacokinetics and safety of single doses of an oral contraceptive containing ethinyl estradiol and levonorgestrel [poster]. In: 111th Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics; 17–20 Mar 2010; Atlanta (GA).

  30. Scheen AJ. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Expert Opin Drug Metab Toxicol. 2013;9(5):529–50.

    Article  PubMed  CAS  Google Scholar 

  31. Kasichayanula S, Liu X, Pe Benito M et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol 2013;76(3):432–44.

  32. Macha S, Mattheus M, Halabi A, et al. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16(3):215–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

This article was adapted from Clinical Pharmacokinetics 2014;53(4):295–304 [3]. The preparation of these articles was not supported by any external funding.

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adis Medical Writers. Pharmacokinetic drug interactions are unlikely when sodium–glucose cotransporters type 2 inhibitors are used to treat type 2 diabetes mellitus. Drugs Ther Perspect 30, 363–366 (2014). https://doi.org/10.1007/s40267-014-0147-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-014-0147-z

Navigation