Skip to main content
Log in

Diabetic Kidney Disease in Older People with Type 2 Diabetes Mellitus: Improving Prevention and Treatment Options

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Age-related metabolic and renal changes predispose older people to an increased risk of diabetes mellitus and diabetic kidney disease, respectively. As the prevalence of the ageing population is increasing, because of increased life expectancy, the prevalence of older people with diabetic kidney disease is likely to increase. Diabetic kidney disease is associated with an increased risk of adverse outcomes and increased costs to healthcare systems. The management includes promotion of a healthy lifestyle and control of cardiovascular risk factors such as hyperglycaemia, hypertension and dyslipidaemia. Older people are a heterogeneous group of people from a community-living fit and independent person to a fully dependent individual residing in a care home. Therefore, management in this age group should be based on a patient’s functional level adopting tight metabolic control in the fit individual and relaxed targets in the frail person. However, despite the maximum available therapy, a significant number of patients with diabetic kidney disease still progress to renal failure and experience adverse cardiac outcomes. Therefore, future research is required to explore methods of early detection of diabetic kidney disease and to investigate novel therapeutic interventions to further improve the outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;38:271–81.

    Google Scholar 

  2. de Cosmo S, Rossi MC, Pellegrini F, AMD-Annals Study Group, et al. Kidney dysfunction and related cardiovascular risk factors among patients with type 2 diabetes. Nephrol Dial Transplant. 2014;29:657–62.

    PubMed  Google Scholar 

  3. Robinson BM, Akizawa T, Jager KJ, et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet. 2016;388:294–306.

    PubMed  PubMed Central  Google Scholar 

  4. Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA. 2016;316:602–10.

    PubMed  PubMed Central  Google Scholar 

  5. Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Grams ME, Chow EK, Segev DL, et al. Lifetime incidence of CKD stages 3–5 in the United States. Am J Kidney Dis. 2013;62:245–52.

    PubMed  PubMed Central  Google Scholar 

  7. Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12:73–81.

    CAS  PubMed  Google Scholar 

  8. Tauchi H, Tsuboi K, Okutomi J. Age changes in the human kidney of the different races. Gerontologia. 1971;17:87–97.

    CAS  PubMed  Google Scholar 

  9. Takazakura E, Sawabu N, Handa A, et al. Intrarenal vascular changes with age and disease. Kidney Int. 1975;2:224–30.

    Google Scholar 

  10. Hoang K, Tan JC, Derby G, et al. Determinants of glomerular hypofiltration in aging humans. Kidney Int. 2003;64:1417–24.

    PubMed  Google Scholar 

  11. Epstein M, Hollenberg NK. Age as a determinant of renal sodium conservation in normal man. J Lab Clin Med. 1976;87:411–7.

    CAS  PubMed  Google Scholar 

  12. Epstein M. Aging and the kidney. J Am Soc Nephrol. 1996;7:1106–22.

    CAS  PubMed  Google Scholar 

  13. Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 1123S;91:1123S–S1127127.

    CAS  PubMed  Google Scholar 

  15. Benbassat CA, Maki KC, Unterman TG. Circulating levels of insulin-like growth factor (IGF) binding protein-1 and -3 in aging men: relationships to insulin, glucose, IGF, and dehydroepiandrosterone sulfate levels and anthropometric measures. J Clin Endocrinol Metab. 1997;82:1484–91.

    CAS  PubMed  Google Scholar 

  16. Rabe K, Lehrke M, Parhofer KG, et al. Adipokines and insulin resistance. Mol Med. 2008;14:741–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, et al. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–94.

    CAS  PubMed  Google Scholar 

  18. Szoke E, Shrayyef MZ, Messing S, et al. Effect of aging on glucose homeostasis: accelerated deterioration of β-cell function in individuals with impaired glucose tolerance. Diabetes Care. 2008;31:539–43.

    CAS  PubMed  Google Scholar 

  19. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharm Rev. 2008;60:470–512.

    CAS  PubMed  Google Scholar 

  20. MacIsaac RJ, Ekinci E. Progression of diabetic kidney disease in the absence of albuminuria. Diabetes Care. 2019;42:1842–4.

    PubMed  Google Scholar 

  21. Eboh C, Chowdhury TA. Management of diabetic renal disease. Ann Transl Med. 2015;3:154. https://doi.org/10.3978/j.issn.2305-5839.2015.06.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Satirapoj B. Nephropathy in diabetes. Adv Exp Med Biol. 2012;771:107–22.

    PubMed  Google Scholar 

  23. Heilig CW, Deb DK, Abdul A, et al. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol. 2013;38:39–49.

    CAS  PubMed  Google Scholar 

  24. Singh AK, Mo W, Dunea G, et al. Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol. 1998;9:802–10.

    CAS  PubMed  Google Scholar 

  25. Hui X, Matsushita K, Sang Y, et al. CKD and cardiovascular disease in the atherosclerosis risk in communities (ARIC) study: interactions with age, sex, and race. Am J Kidney Dis. 2013;62:691–702.

    PubMed  PubMed Central  Google Scholar 

  26. Drion I, van Hateren KJ, Joosten H, et al. Chronic kidney disease and mortality risk among older patients with type 2 diabetes mellitus (ZODIAC-24). Age Ageing. 2012;41:345–50.

    PubMed  Google Scholar 

  27. Kim KS, Park SW, Cho YW, et al. Higher prevalence and progression rate of chronic kidney disease in elderly patients with type 2 diabetes mellitus. Diabetes Metab J. 2018;42:242–332.

    Google Scholar 

  28. Wang T, Xi Y, Lubwama R, et al. Chronic kidney disease among US adults with type 2 diabetes and cardiovascular diseases: a national estimate of prevalence by KDIGO 2012 classification. Diabetes Metab Syndr. 2019;13:612–5.

    PubMed  Google Scholar 

  29. Maric C, Hall JE. Obesity, metabolic syndrome and diabetic nephropathy. Contrib Nephrol. 2011;170:28–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2:801–9.

    Google Scholar 

  31. Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.

    CAS  PubMed  Google Scholar 

  32. Chen X, Wei G, Jalili T, et al. The associations of plant protein intake with all-cause mortality in CKD. Am J Kidney Dis. 2016;67:423–30.

    CAS  PubMed  Google Scholar 

  33. Lew QJ, Jafar TH, Koh HW, et al. Red meat intake and risk of esrd. J Am Soc Nephrol. 2016;28:304–12.

    PubMed  PubMed Central  Google Scholar 

  34. Liao D, Ma L, Liu J, et al. Cigarette smoking as a risk factor for diabetic nephropathy: a systematic review and meta-analysis of prospective cohort studies. PLoS ONE. 2019;14:e0210213. https://doi.org/10.1371/journal.pone.0210213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

  36. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30.

    PubMed  PubMed Central  Google Scholar 

  37. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Google Scholar 

  38. Duckworth W, Abraira C, Moritz T, VADT Investigators, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    CAS  PubMed  Google Scholar 

  39. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabet Endocrinol. 2017;5:431–7.

    Google Scholar 

  40. Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    CAS  PubMed  Google Scholar 

  41. Wong MG, Perkovic V, Chalmers J, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39:694–700.

    CAS  PubMed  Google Scholar 

  42. Laiteerapong N, Ham SA, Gao Y, et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the Diabetes & Aging Study). Diabetes Care. 2019;42:416–26.

    CAS  PubMed  Google Scholar 

  43. Lee MY, Huang JC, Chen SC, et al. Association of HbA1c variability and renal progression in patients with type 2 diabetes with chronic kidney disease stages 3–4. Int J Mol Sci. 2018;19:4116. https://doi.org/10.3390/ijms19124116.

    Article  PubMed Central  Google Scholar 

  44. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36:3460–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wanner C, Inzucchi SE, Lachin JM, EMPA-REG OUTCOME Investigators, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    CAS  PubMed  Google Scholar 

  46. Perkovic V, Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704.

    CAS  PubMed  Google Scholar 

  47. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    CAS  PubMed  Google Scholar 

  48. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    CAS  PubMed  Google Scholar 

  49. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9.

    CAS  PubMed  Google Scholar 

  50. Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48.

    CAS  PubMed  Google Scholar 

  51. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    CAS  PubMed  Google Scholar 

  52. Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6:605–17.

    CAS  PubMed  Google Scholar 

  53. Avgerinos I, Karagiannis T, Malandris K, et al. Glucagon-like peptide 1 receptor agonists and microvascular outcomes in type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2019;21:188–93.

    CAS  PubMed  Google Scholar 

  54. Clemens KK, Liu K, Shariff S, et al. Secular trends in antihyperglycaemic medication prescriptions in older adults with diabetes and chronic kidney disease: 2004–2013. Diabetes Obes Metab. 2016;18:607–14.

    CAS  PubMed  Google Scholar 

  55. Hettige TS, Cooper ME. Hypoglycaemia in patients with diabetes mellitus and renal impairment. Diab Vasc Dis Res. 2017;14:166–8.

    PubMed  Google Scholar 

  56. Abdelhafiz AH, Sinclair AJ. Cognitive frailty in older people with type 2 diabetes mellitus: the central role of hypoglycaemia and the need for prevention. Curr Diabetes Rep. 2019;19:15. https://doi.org/10.1007/s11892-019-1135-4.

    Article  CAS  Google Scholar 

  57. Balkau B, Metzger M, Andreelli F, et al. Impact of sex and glucose-lowering treatments on hypoglycaemic symptoms in people with type 2 diabetes and chronic kidney disease: the French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) Study. Diabetes Metab. 2019;45:175–83.

    CAS  PubMed  Google Scholar 

  58. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1e150.

  59. Cushman WC, Evans GW, Byington RP, ACCORD Study Group, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    PubMed  Google Scholar 

  60. de Galan BE, Perkovic V, Ninomiya T, et al. Lowering blood pressure reduces renal events in type 2 diabetes. J Am Soc Nephrol. 2009;20:883–92.

    PubMed  PubMed Central  Google Scholar 

  61. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA. 2016;315:2673–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cooper-DeHoff RM, Gong Y, Handberg EM, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA. 2010;304:61–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cederholm J, Gudbjornsdottir S, Eliasson B, et al. Systolic blood pressure and risk of cardiovascular diseases in type 2 diabetes: an observational study from the Swedish national diabetes register. J Hypertens. 2010;28:2026–35.

    CAS  PubMed  Google Scholar 

  64. Brunström M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016;352:i717.

    PubMed  PubMed Central  Google Scholar 

  65. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313:603–15.

    PubMed  Google Scholar 

  66. Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and Bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810.

    CAS  PubMed  Google Scholar 

  67. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.

    PubMed  Google Scholar 

  68. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.

    PubMed  Google Scholar 

  69. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10—should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017;35:922–44.

    CAS  PubMed  Google Scholar 

  70. Catalá-López F, Macías Saint-Gerons D, González-Bermejo D, et al. Cardiovascular and renal outcomes of renin-angiotensin system blockade in adult patients with diabetes mellitus: a systematic review with network meta-analyses. PLoS Med. 2016;13:e1001971.

    PubMed  PubMed Central  Google Scholar 

  71. Vejakama P, Thakkinstian A, Lertrattananon D, et al. Reno-protective effects of renin–angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis. Diabetologia. 2012;55:566–78.

    CAS  PubMed  Google Scholar 

  72. Wu HY, Huang JW, Lin HJ, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ. 2013;347:f6008.

    PubMed  PubMed Central  Google Scholar 

  73. Strippoli GF, Craig M, Deeks JJ, et al. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ. 2004;329:828.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kunz R, Friedrich C, Wolbers M, et al. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med. 2008;148:30–48.

    PubMed  Google Scholar 

  75. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Google Scholar 

  76. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.

    CAS  PubMed  Google Scholar 

  77. Tobe SW, Clase CM, Gao P, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation. 2011;123:1098–107.

    CAS  PubMed  Google Scholar 

  78. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  79. Remonti LR, Dias S, Leitao CB, et al. Classes of antihypertensive agents and mortality in hypertensive patients with type 2 diabetes: network meta-analysis of randomized trials. J Diabetes Complications. 2016;30:1192–200.

    PubMed  Google Scholar 

  80. Tinetti ME, Han L, Lee DSH, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174:588–95.

    PubMed  PubMed Central  Google Scholar 

  81. Sabayan B, Oleksik AM, Maier AB, et al. High blood pressure and resilience to physical and cognitive decline in the oldest old: the Leiden 85-plus Study. J Am Geriatr Soc. 2012;60:2014–9.

    PubMed  Google Scholar 

  82. Mossello E, Pieraccioli M, Nesti N, et al. Effects of low blood pressure in cognitively impaired elderly patients treated with antihypertensive drugs. JAMA Intern Med. 2015;175:578–85.

    PubMed  Google Scholar 

  83. Odden MC, Peralta CA, Haan MN, et al. Rethinking the association of high blood pressure with mortality in elderly adults: the impact of frailty. Arch Intern Med. 2012;172:1162–8.

    PubMed  PubMed Central  Google Scholar 

  84. Kitagawa N, Ushigome E, Tanaka T, et al. Isolated high home systolic blood pressure in patients with type 2 diabetes is a prognostic factor for the development of diabetic nephropathy: KAMOGAWA-HBP study. Diabetes Res Clin Pract. 2019;158:107920. https://doi.org/10.1016/j.diabres.2019.

    Article  CAS  PubMed  Google Scholar 

  85. Denardo SJ, Gong Y, Nichols WW, et al. Blood pressure and outcomes in very old hypertensive coronary artery disease patients: an INVEST substudy. Am J Med. 2010;123:719–26.

    PubMed  PubMed Central  Google Scholar 

  86. Ricci F, Fedorowski A, Radico F, et al. Cardiovascular morbidity and mortality related to orthostatic hypotension: a meta-analysis of prospective observational studies. Eur Heart J. 2015;36:1609–17.

    PubMed  Google Scholar 

  87. Gangavati A, Hajjar I, Quach L, et al. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: the maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J Am Geriatr Soc. 2011;59:383–9.

    PubMed  PubMed Central  Google Scholar 

  88. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

    CAS  PubMed  Google Scholar 

  89. Collins R, Armitage J, Parish S, et al. Heart Protection Study Collaborative Group: Heart Protection Study of cholesterol lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361:2005–166.

    PubMed  Google Scholar 

  90. Neil HAW, DeMicco DA, Luo D, et al. Analysis of efficacy and safety in patients aged 65–75 years at randomisation: Collaborative Atorvastatin Diabetes Study (CARDS). Diabetes Care. 2006;29:2378–84.

    CAS  PubMed  Google Scholar 

  91. Foody JM, Rathore SS, Galusha D, et al. Hydroxymethylglutaryl-CoA reductase inhibitors in older persons with acute myocardial infarction: evidence for an age statin interaction. J Am Geriatr Soc. 2006;54:421–30.

    PubMed  PubMed Central  Google Scholar 

  92. Shen X, Zhang Z, Zhang X, et al. Efficacy of statins in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2016;15:179. https://doi.org/10.1186/s12944-016-0350-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Su X, Zhang L, Lv J, et al. Effect of statins on kidney disease outcomes: a systematic review and meta-analysis. Am J Kidney Dis. 2016;67:881–92.

    CAS  PubMed  Google Scholar 

  94. Qin X, Dong H, Fang K, et al. The effect of statins on renal outcomes in patients with diabetic kidney disease: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2017. https://doi.org/10.1002/dmrr.2901.

    Article  PubMed  Google Scholar 

  95. Esmeijer K, Dekkers OM, de Fijter JW, et al. Effect of different types of statins on kidney function decline and proteinuria: a network meta-analysis. Sci Rep. 2019;9:16632. https://doi.org/10.1038/s41598-019-53064-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuo Y, Li T, Lei Z. Should we add atorvastatin to irbesartan for improving renoprotective effects in early diabetic nephropathy? A meta-analysis of randomized controlled trials. Pharmacol Res. 2019;146:104286. https://doi.org/10.1016/j.phrs.2019.104286.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Z, Wub P, Zhang J, et al. The effect of statins on microalbuminuria, proteinuria, progression of kidney function, and all-cause mortality in patients with non-end stage chronic kidney disease: a meta-analysis. Pharmacol Res. 2016;105:74–83.

    CAS  PubMed  Google Scholar 

  98. Mark PB, Winocour P, Day C. Management of lipids in adults with diabetes mellitus and nephropathy and/or chronic kidney disease: summary of joint guidance from the Association of British Clinical Diabetologists (ABCD) and the Renal Association (RA). Br J Diabetes. 2017;17:64–72.

    Google Scholar 

  99. Han E, Kim G, Lee J-Y, et al. Comparison between atorvastatin and rosuvastatin in renal function decline among patients with diabetes. Endocrinol Metab. 2017;32:274–80.

    CAS  Google Scholar 

  100. Frazier R, Mehta R, Cai X, et al. Associations of fenofibrate therapy with incidence and progression of CKD in patients with type 2 diabetes. Kidney Int Rep. 2019;4:94–102.

    PubMed  Google Scholar 

  101. Venegas Sanabria LC, Babosa Balaquera S, Suarez Acosta AM, et al. Statin and risk of falls in the elderly: a sytematic review of the literature. Rev Esp Geriatr Gerontol. 2017;52:317–21.

    PubMed  Google Scholar 

  102. Chatzizisis Y, Koskinas K, Misirli G, et al. Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. Drug Saf. 2010;33:171–87.

    CAS  PubMed  Google Scholar 

  103. Law M, Wald N, Rudnicka A. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–81.

    PubMed  Google Scholar 

  105. Corsonello A, Roller-Wirnsberger R, Wirnsberger G, et al. Clinical implications of estimating glomerular filtration rate with three different equations among older people. Preliminary results of the project “Screening for Chronic Kidney Disease among Older People across Europe (SCOPE)”. J Clin Med. 2020;9:294. https://doi.org/10.3390/jcm9020294.

    Article  CAS  PubMed Central  Google Scholar 

  106. Devarajan P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology. 2010;15:419–28.

    PubMed  Google Scholar 

  107. Sheira G, Noreldin N, Tamer A, et al. Urinary biomarker N-acetyl-β-d-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J Diabetes Metab Disord. 2015;14:4. https://doi.org/10.1186/s40200-015-0133-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Robles-Osorio ML, Sabath E. Tubular dysfunction and non-albuminuric renal disease in subjects with type 2 diabetes mellitus. Rev Investig Clin. 2014;66:234–9.

    Google Scholar 

  109. Wada Y, Abe M, Moritani H, et al. Original research: potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney disease models. Exp Biol Med (Maywood). 2016;241:1865–76.

    CAS  Google Scholar 

  110. Zhuang Z, Bai Q, et al. Increased urinary angiotensinogen precedes the onset of albuminuria in normotensive type 2 diabetic patients. Int J Clin Exp Pathol. 2015;8:11464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nikolov A, et al. Serum anti-collagen type IV IgM antibodies and development of diabetic nephropathy in diabetics with essential hypertension. Cent J Immunol. 2016;41:86–92.

    CAS  Google Scholar 

  112. Yang X, Liu S, Zhang E, et al. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J Diabetes Investig. 2018;9:602–9.

    CAS  Google Scholar 

  113. Bakris GL, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    CAS  PubMed  Google Scholar 

  114. Sharma D, Bhattacharya P, Kalia K, et al. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract. 2017;128:91–108.

    CAS  PubMed  Google Scholar 

  115. de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol. 2014;25:1083–93.

    PubMed  PubMed Central  Google Scholar 

  116. Wu H, Kong L, Zhou S, et al. The role of microRNAs in diabetic nephropathy. J Diabetes Res. 2014;2014:920134. https://doi.org/10.1155/2014/920134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kato M, Natarajan R. Diabetic nephropathy: emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10:517–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Takamatsu K. Renal status in elderly patients with type 2 diabetes. Clin Exp Nephrol. 2020;24:53–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Abdelhafiz.

Ethics declarations

Funding

No sources of funding were received for the prepration of this article.

Conflict of interest

Ahmed H. Abdehafiz has no conflicts of interest that are directly relevant to the content of this article.

Appendix

Appendix

Box 1 Nephrogenic and diabetogenic effects of ageinga [8,9,10,11,12,13,14,15,16,17,18,19]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhafiz, A.H. Diabetic Kidney Disease in Older People with Type 2 Diabetes Mellitus: Improving Prevention and Treatment Options. Drugs Aging 37, 567–584 (2020). https://doi.org/10.1007/s40266-020-00773-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-020-00773-y

Navigation