Skip to main content

Diabetic Kidney Disease: Identification, Prevention, and Treatment

  • Chapter
  • First Online:
Precision Medicine in Diabetes

Abstract

Diabetes is the most common cause of end-stage kidney disease (ESKD) in the USA and other developed countries. About 50% of the patients with type 1 diabetes (T1D) and 30% of those with type 2 diabetes (T2D) develop chronic kidney disease (CKD) (Afkarian, et al., J Am Soc Nephrol. 24:302–8, 2013; Fox, et al., Lancet. 380:1662–73, 2012). Diabetic nephropathy is a chronic condition that develops over many years, and it is characterized by a gradual increase in urinary albumin excretion, blood pressure levels and cardiovascular risk, declining glomerular filtration rate (GFR), and eventual ESKD. Annual screening for CKD should include both albuminuria measurements and estimates of GFR. Diabetic nephropathy manifests as a constellation of kidney structural changes considered unique to this disease, which closely correlate with kidney function. Multiple factors are associated with CKD in diabetes, and patients with diabetes often require multiple therapies aimed at prevention of progressive CKD and its associated comorbidities and mortality. Management of cardiorenal risk factors, including lifestyle modifications (diet, exercise, and cessation of smoking); glucose, blood pressure, and lipid control; use of agents blocking the renin-angiotensin-aldosterone system; and use of SGLT2 inhibitors in patients with T2D and other agents with proven renal or cardiovascular benefit are the cornerstones of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

Albumin-to-creatinine ratio

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

DKD:

Diabetic kidney disease

ESKD:

End-stage kidney disease

eGFR:

Estimated glomerular filtration rate

GBM:

Glomerular basement membrane

GFR:

Glomerular filtration rate

KDIGO:

Kidney Disease: Improving Global Outcomes

RAS:

Renin-angiotensin system

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

References

  1. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. In: National Institutes of Health NIoDaDaKD, editor. Bethesda, MD; 2020.

    Google Scholar 

  2. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, et al. Clinical manifestations of kidney Disease among US adults with diabetes, 1988–2014. JAMA. 2016;316(6):602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. Journal of the American Society of Nephrology : JASN. 2013;24(2):302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41.

    Article  CAS  Google Scholar 

  6. Dyck RF, Jiang Y, Osgood ND. The long-term risks of end stage renal disease and mortality among first nations and non-first nations people with youth-onset diabetes. Can J Diabetes. 2014;38(4):237–43.

    Article  PubMed  Google Scholar 

  7. Dart AB, Sellers EA, Martens PJ, Rigatto C, Brownell MD, Dean HJ. High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care. 2012;35(6):1265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chan JC, Lau ES, Luk AO, Cheung KK, Kong AP, Yu LW, et al. Premature mortality and comorbidities in young-onset diabetes: a 7-year prospective analysis. Am J Med. 2014;127(7):616–24.

    Article  PubMed  Google Scholar 

  9. Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33(7):1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226–34.

    Article  CAS  PubMed  Google Scholar 

  11. Vistisen D, Andersen GS, Hulman A, Persson F, Rossing P, Jorgensen ME. Progressive decline in estimated glomerular filtration rate in patients with diabetes after moderate loss in kidney function-even without albuminuria. Diabetes Care. 2019;42(10):1886–94.

    Article  PubMed  Google Scholar 

  12. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group US. Risk factors for renal dysfunction in type 2 diabetes: U.K. prospective diabetes study 74. Diabetes. 2006;55(6):1832–9.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE, et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care. 2009;32(8):1497–502.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.

    Article  CAS  PubMed  Google Scholar 

  15. Caramori ML, Kim Y, Huang C, Fish AJ, Rich SS, Miller ME, et al. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes. 2002;51(2):506–13.

    Article  CAS  PubMed  Google Scholar 

  16. Mauer M, Caramori ML, Fioretto P, Najafian B. Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients. Nephrol Dial Transplant. 2015;30(6):918–23.

    Article  CAS  PubMed  Google Scholar 

  17. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation. 2002;39(4):713–20.

    Article  Google Scholar 

  18. Chong YB, Keng TC, Tan LP, Ng KP, Kong WY, Wong CM, et al. Clinical predictors of non-diabetic renal disease and role of renal biopsy in diabetic patients with renal involvement: a single Centre review. Ren Fail. 2012;34(3):323–8.

    Article  PubMed  Google Scholar 

  19. Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clinical Journal of the American Society of Nephrology: CJASN. 2013;8(10):1718–24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Inter. 2020;98(4S):S1–115.

    Google Scholar 

  21. Gansevoort RT, Brinkman J, Bakker SJ, De Jong PE, de Zeeuw D. Evaluation of measures of urinary albumin excretion. Am J Epidemiol. 2006;164(8):725–7.

    Article  PubMed  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mauer SM. Structural-functional correlations of diabetic nephropathy. Kidney Int. 1994;45(2):612–22.

    Article  CAS  PubMed  Google Scholar 

  24. Mauer SM, Steffes MW, Brown DM. The kidney in diabetes. Am J Med. 1981;70(3):603–12.

    Article  CAS  PubMed  Google Scholar 

  25. Lane PH, Steffes MW, Fioretto P, Mauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int. 1993;43(3):661–7.

    Article  CAS  PubMed  Google Scholar 

  26. Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56(8):2155–60.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis EN, Steffes MW, Goetz FC, Sutherland DE, Mauer SM. Glomerular filtration surface in type I diabetes mellitus. Kidney Int. 1986;29(4):889–94.

    Article  CAS  PubMed  Google Scholar 

  28. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mauer SM, Sutherland DE, Steffes MW. Relationship of systemic blood pressure to nephropathology in insulin-dependent diabetes mellitus. Kidney Int. 1992;41(4):736–40.

    Article  CAS  PubMed  Google Scholar 

  30. Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. Journal of the American Society of Nephrology: JASN. 2013;24(7):1175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris RD, Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int. 1991;40(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  32. Ellis EN, Steffes MW, Chavers B, Mauer SM. Observations of glomerular epithelial cell structure in patients with type I diabetes mellitus. Kidney Int. 1987;32(5):736–41.

    Article  CAS  PubMed  Google Scholar 

  33. Bjorn SF, Bangstad HJ, Hanssen KF, Nyberg G, Walker JD, Viberti GC, et al. Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia. 1995;38(10):1197–204.

    Article  CAS  PubMed  Google Scholar 

  34. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harindhanavudhi T, Parks A, Mauer M, Caramori ML. Podocyte structural parameters do not predict progression to diabetic nephropathy in normoalbuminuric type 1 diabetic patients. Am J Nephrol. 2015;41(4–5):277–83.

    Article  PubMed  Google Scholar 

  36. Nordwall M, Abrahamsson M, Dhir M, Fredrikson M, Ludvigsson J, Arnqvist HJ. Impact of HbA1c, followed from onset of type 1 diabetes, on the development of severe retinopathy and nephropathy: the VISS study (vascular diabetic complications in Southeast Sweden). Diabetes Care. 2015;38(2):308–15.

    Article  CAS  PubMed  Google Scholar 

  37. Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the diabetes control and complications trial. Diabetes Care. 2008;31(11):2198–202.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rotbain Curovic V, Theilade S, Winther SA, Tofte N, Tarnow L, Jorsal A, et al. Visit-to-visit variability of clinical risk markers in relation to long-term complications in type 1 diabetes. Diabet Med. 2021;38(5):e14459.

    Article  CAS  PubMed  Google Scholar 

  39. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Lee YS, et al. HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study. Diabetologia. 2012;55(12):3163–72.

    Article  CAS  PubMed  Google Scholar 

  40. Dost A, Klinkert C, Kapellen T, Lemmer A, Naeke A, Grabert M, et al. Arterial hypertension determined by ambulatory blood pressure profiles: contribution to microalbuminuria risk in a multicenter investigation in 2,105 children and adolescents with type 1 diabetes. Diabetes Care. 2008;31(4):720–5.

    Article  PubMed  Google Scholar 

  41. Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens. 1993;11(3):309–17.

    Google Scholar 

  42. Daousi C, Bain SC, Barnett AH, Gill GV. Hypertriglyceridaemia is associated with an increased likelihood of albuminuria in extreme duration (>50 years) type 1 diabetes. Diabet Med. 2008;25(10):1234–6.

    Article  CAS  PubMed  Google Scholar 

  43. Thomas MC, Rosengard-Barlund M, Mills V, Ronnback M, Thomas S, Forsblom C, et al. Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care. 2006;29(2):317–22.

    Article  CAS  PubMed  Google Scholar 

  44. Tolonen N, Forsblom C, Thorn L, Waden J, Rosengard-Barlund M, Saraheimo M, et al. Relationship between lipid profiles and kidney function in patients with type 1 diabetes. Diabetologia. 2008;51(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  45. Tofte N, Suvitaival T, Ahonen L, Winther SA, Theilade S, Frimodt-Moller M, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep. 2019;9(1):16398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rossing P, Hougaard P, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care. 2002;25(5):859–64.

    Article  PubMed  Google Scholar 

  47. Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, Johnson RJ, et al. Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care. 2013;36(11):3678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Tai TY, et al. Association between insulin resistance and development of microalbuminuria in type 2 diabetes: a prospective cohort study. Diabetes Care. 2011;34(4):982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes. 2009;58(7):1668–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thorn LM, Forsblom C, Waden J, Saraheimo M, Tolonen N, Hietala K, et al. Metabolic syndrome as a risk factor for cardiovascular disease, mortality, and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2009;32(5):950–2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allawi J, Rao PV, Gilbert R, Scott G, Jarrett RJ, Keen H, et al. Microalbuminuria in non-insulin-dependent diabetes: its prevalence in Indian compared with Europid patients. Br Med J (Clin Res Ed). 1988;296(6620):462–4.

    Article  CAS  Google Scholar 

  52. Sinha SK, Shaheen M, Rajavashisth TB, Pan D, Norris KC, Nicholas SB. Association of race/ethnicity, inflammation, and albuminuria in patients with diabetes and early chronic kidney disease. Diabetes Care. 2014;37(4):1060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nelson RG, Knowler WC, Pettitt DJ, Hanson RL, Bennett PH. Incidence and determinants of elevated urinary albumin excretion in Pima Indians with NIDDM. Diabetes Care. 1995;18(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  54. Joshy G, Dunn P, Fisher M, Lawrenson R. Ethnic differences in the natural progression of nephropathy among diabetes patients in New Zealand: hospital admission rate for renal complications, and incidence of end-stage renal disease and renal death. Diabetologia. 2009;52(8):1474–8.

    Article  CAS  PubMed  Google Scholar 

  55. Collins VR, Dowse GK, Finch CF, Zimmet PZ, Linnane AW. Prevalence and risk factors for micro- and macroalbuminuria in diabetic subjects and entire population of Nauru. Diabetes. 1989;38(12):1602–10.

    Article  CAS  PubMed  Google Scholar 

  56. Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, et al. The genetic landscape of renal complications in type 1 diabetes. Journal of the American Society of Nephrology: JASN. 2017;28(2):557–74.

    Article  PubMed  Google Scholar 

  57. van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M, et al. A genome-wide association study of diabetic kidney Disease in subjects with type 2 diabetes. Diabetes. 2018;67(7):1414–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy [see comments]. N Engl J Med. 1989;320(18):1161–5.

    Article  CAS  PubMed  Google Scholar 

  59. Fagerudd JA, Pettersson-Fernholm KJ, Gronhagen-Riska C, Groop PH. The impact of a family history of type II (non-insulin-dependent) diabetes mellitus on the risk of diabetic nephropathy in patients with type I (insulin-dependent) diabetes mellitus. Diabetologia. 1999;42(5):519–26.

    Article  CAS  PubMed  Google Scholar 

  60. Thorn LM, Forsblom C, Fagerudd J, Pettersson-Fernholm K, Kilpikari R, Groop PH, et al. Clustering of risk factors in parents of patients with type 1 diabetes and nephropathy. Diabetes Care. 2007;30(5):1162–7.

    Article  PubMed  Google Scholar 

  61. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia. 2018;61(1):6–20.

    Article  CAS  PubMed  Google Scholar 

  63. Pilemann-Lyberg S, Hansen TW, Tofte N, Winther SA, Theilade S, Ahluwalia TS, et al. Uric acid is an independent risk factor for decline in kidney function, cardiovascular events, and mortality in patients with type 1 diabetes. Diabetes Care. 2019;42(6):1088–94.

    Article  CAS  PubMed  Google Scholar 

  64. Murussi M, Campagnolo N, Beck MO, Gross JL, Silveiro SP. High-normal levels of albuminuria predict the development of micro- and macroalbuminuria and increased mortality in Brazilian type 2 diabetic patients: an 8-year follow-up study. Diabet Med. 2007;24(10):1136–42.

    Article  CAS  PubMed  Google Scholar 

  65. de Zeeuw D, Ramjit D, Zhang Z, Ribeiro AB, Kurokawa K, Lash JP, et al. Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAL. Kidney Int. 2006;69(9):1675–82.

    Article  PubMed  Google Scholar 

  66. Babazono T, Nyumura I, Toya K, Hayashi T, Ohta M, Suzuki K, et al. Higher levels of urinary albumin excretion within the normal range predict faster decline in glomerular filtration rate in diabetic patients. Diabetes Care. 2009;32(8):1518–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zoppini G, Targher G, Chonchol M, Ortalda V, Negri C, Stoico V, et al. Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clinical Journal of the American Society of Nephrology: CJASN. 2012;7(3):401–8.

    Article  CAS  PubMed  Google Scholar 

  68. Rossing P, Hommel E, Smidt UM, Parving HH. Reduction in albuminuria predicts a beneficial effect on diminishing the progression of human diabetic nephropathy during antihypertensive treatment. Diabetologia. 1994;37(5):511–6.

    Article  CAS  PubMed  Google Scholar 

  69. Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7(2):128–39.

    Article  CAS  PubMed  Google Scholar 

  70. Kramer CK, Retnakaran R. Concordance of retinopathy and nephropathy over time in type 1 diabetes: an analysis of data from the diabetes control and complications trial. Diabet Med. 2013;30(11):1333–41.

    Article  CAS  PubMed  Google Scholar 

  71. Penno G, Solini A, Zoppini G, Orsi E, Zerbini G, Trevisan R, et al. Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012;35(11):2317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Margolis DJ, Hofstad O, Feldman HI. Association between renal failure and foot ulcer or lower-extremity amputation in patients with diabetes. Diabetes Care. 2008;31(7):1331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ko SH, Park SA, Cho JH, Song KH, Yoon KH, Cha BY, et al. Progression of cardiovascular autonomic dysfunction in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 2008;31(9):1832–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nielsen FS, Hansen HP, Jacobsen P, Rossing P, Smidt UM, Christensen NJ, et al. Increased sympathetic activity during sleep and nocturnal hypertension in type 2 diabetic patients with diabetic nephropathy. Diabet Med. 1999;16(7):555–62.

    Article  CAS  PubMed  Google Scholar 

  75. Tahrani AA, Dubb K, Raymond NT, Begum S, Altaf QA, Sadiqi H, et al. Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: a cohort study. Diabetologia. 2014;57(6):1249–56.

    Article  CAS  PubMed  Google Scholar 

  76. Amin AP, Whaley-Connell AT, Li S, Chen SC, McCullough PA, Kosiborod MN, et al. The synergistic relationship between estimated GFR and microalbuminuria in predicting long-term progression to ESRD or death in patients with diabetes: results from the kidney early evaluation program (KEEP). American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation. 2013;61(4 Suppl 2):S12–23.

    Article  Google Scholar 

  77. McCullough PA, Jurkovitz CT, Pergola PE, McGill JB, Brown WW, Collins AJ, et al. Independent components of chronic kidney disease as a cardiovascular risk state: results from the kidney early evaluation program (KEEP). Arch Intern Med. 2007;167(11):1122–9.

    Article  CAS  PubMed  Google Scholar 

  78. So WY, Kong AP, Ma RC, Ozaki R, Szeto CC, Chan NN, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29(9):2046–52.

    Article  PubMed  Google Scholar 

  79. Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A, et al. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia. 2007;50(5):941–8.

    Article  CAS  PubMed  Google Scholar 

  80. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58(7):1651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetologia. 2010;53(11):2312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deckert T, Yokoyama H, Mathiesen E, Ronn B, Jensen T, Feldt-Rasmussen B, et al. Cohort study of predictive value of urinary albumin excretion for atherosclerotic vascular disease in patients with insulin dependent diabetes. BMJ. 1996;312(7035):871–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tuomilehto J, Borch-Johnsen K, Molarius A, Forsen T, Rastenyte D, Sarti C, et al. Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia. 1998;41(7):784–90.

    Article  CAS  PubMed  Google Scholar 

  84. Targher G, Marra F, Marchesini G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: causal effect or epiphenomenon? Diabetologia. 2008;51(11):1947–53.

    Article  CAS  PubMed  Google Scholar 

  85. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med. 1997;157(13):1413–8.

    Article  CAS  PubMed  Google Scholar 

  86. Fuller JH, Stevens LK, Wang SL. Risk factors for cardiovascular mortality and morbidity: the WHO Mutinational study of vascular disease in diabetes. Diabetologia. 2001;44(Suppl 2):S54–64.

    Article  CAS  PubMed  Google Scholar 

  87. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Article  PubMed  Google Scholar 

  88. de Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al. Executive summary of the 2020 KDIGO diabetes management in CKD guideline: evidence-based advances in monitoring and treatment. Kidney Int. 2020;98(4):839–48.

    Article  PubMed  CAS  Google Scholar 

  89. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2(10):810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kwakernaak AJ, Krikken JA, Binnenmars SH, Visser FW, Hemmelder MH, Woittiez AJ, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2(5):385–95.

    Article  CAS  PubMed  Google Scholar 

  91. Lambers Heerspink HJ, Holtkamp FA, Parving HH, Navis GJ, Lewis JB, Ritz E, et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 2012;82(3):330–7.

    Article  PubMed  CAS  Google Scholar 

  92. Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open. 2013;3(5).

    Google Scholar 

  93. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62(1):220–8.

    Article  PubMed  Google Scholar 

  94. Tirosh A, Golan R, Harman-Boehm I, Henkin Y, Schwarzfuchs D, Rudich A, et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care. 2013;36(8):2225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jackson S, le Roux CW, Docherty NG. Bariatric surgery and microvascular complications of type 2 diabetes mellitus. Curr Atheroscler Rep. 2014;16(11):453.

    Article  PubMed  CAS  Google Scholar 

  96. Bjornstad P, Nehus E, Jenkins T, Mitsnefes M, Moxey-Mims M, Dixon JB, et al. Five-year kidney outcomes of bariatric surgery differ in severely obese adolescents and adults with and without type 2 diabetes. Kidney Int. 2020;97(5):995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  98. The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes. 1996;45(10):1289–98.

    Google Scholar 

  99. Group DER, de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365(25):2366–76.

    Article  CAS  Google Scholar 

  100. Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400–5.

    Article  CAS  PubMed  Google Scholar 

  101. Ranjan AG, Rosenlund SV, Hansen TW, Rossing P, Andersen S, Norgaard K. Improved time in range over 1 year is associated with reduced albuminuria in individuals with sensor-augmented insulin pump-treated type 1 diabetes. Diabetes Care. 2020;43(11):2882–5.

    Article  CAS  PubMed  Google Scholar 

  102. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [published erratum appears in Lancet 1999 Aug 14;354(9178):602] [see comments]. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  103. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  105. Perkovic V, Heerspink HL, Chalmers J, Woodward M, Jun M, Li Q, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  106. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Papademetriou V, Lovato L, Doumas M, Nylen E, Mottl A, Cohen RM, et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 2015;87(3):649–59.

    Article  PubMed  Google Scholar 

  108. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  109. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney Disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  110. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  111. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney Disease. N Engl J Med. 2020;383(15):1436–46.

    Article  CAS  PubMed  Google Scholar 

  112. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 update to: Management of Hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetes Care. 2020;43(2):487–93.

    Article  CAS  PubMed  Google Scholar 

  113. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. Erratum. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020;43:487–93. Diabetes Care. 2020;43(7):1670.

    Google Scholar 

  114. Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6(8):605–17.

    Article  CAS  PubMed  Google Scholar 

  115. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet. 1997;349(9068):1787–92.

    Google Scholar 

  116. Bilous R, Chaturvedi N, Sjolie AK, Fuller J, Klein R, Orchard T, et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009;151(1):11–20. W3-4.

    Article  PubMed  Google Scholar 

  117. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(1):40–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Group ACEIiDNT. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med. 2001;134(5):370–9.

    Article  Google Scholar 

  119. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8.

    Article  CAS  PubMed  Google Scholar 

  120. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group [see comments] [published erratum appears in BMJ 1999 Jan 2;318(7175):29]. BMJ. 1998;317(7160):703–13.

    Google Scholar 

  121. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355(9200):253–9.

    Google Scholar 

  122. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med. 2004;351(19):1941–51.

    Article  CAS  PubMed  Google Scholar 

  123. Patel A, Group AC, MacMahon S, Chalmers J, Neal B, Woodward M, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370(9590):829–40.

    Article  CAS  PubMed  Google Scholar 

  124. Persson F, Lindhardt M, Rossing P, Parving HH. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: a systematic review. J Renin Angiotensin Aldosterone Syst. 2016;17(3).

    Google Scholar 

  125. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364(10):907–17.

    Article  CAS  PubMed  Google Scholar 

  126. Strippoli GF, Craig M, Schena FP, Craig JC. Antihypertensive agents for primary prevention of diabetic nephropathy. J Am Soc Nephrol: JASN. 2005;16(10):3081–91.

    Article  CAS  PubMed  Google Scholar 

  127. Sim JJ, Shi J, Kovesdy CP, Kalantar-Zadeh K, Jacobsen SJ. Impact of achieved blood pressures on mortality risk and end-stage renal disease among a large, diverse hypertension population. J Am Coll Cardiol. 2014;64(6):588–97.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  129. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  130. Miao Y, Dobre D, Heerspink HJ, Brenner BM, Cooper ME, Parving HH, et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. Diabetologia. 2011;54(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  131. Holtkamp FA, de Zeeuw D, Thomas MC, Cooper ME, de Graeff PA, Hillege HJ, et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 2011;80(3):282–7.

    Article  CAS  PubMed  Google Scholar 

  132. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ. 2000;321(7274):1440–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jacobsen P, Andersen S, Rossing K, Jensen BR, Parving HH. Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int. 2003;63(5):1874–80.

    Article  CAS  PubMed  Google Scholar 

  134. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.

    Article  CAS  PubMed  Google Scholar 

  135. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    Article  CAS  PubMed  Google Scholar 

  136. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.

    Article  CAS  PubMed  Google Scholar 

  137. Ren F, Tang L, Cai Y, Yuan X, Huang W, Luo L, et al. Meta-analysis: the efficacy and safety of combined treatment with ARB and ACEI on diabetic nephropathy. Ren Fail. 2015;37(4):548–61.

    Article  CAS  PubMed  Google Scholar 

  138. Currie G, Taylor AH, Fujita T, Ohtsu H, Lindhardt M, Rossing P, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8(4):301–12.

    Article  CAS  PubMed  Google Scholar 

  140. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of Finerenone on chronic kidney Disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.

    Article  CAS  PubMed  Google Scholar 

  141. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with Finerenone in kidney Disease and type 2 diabetes. N Engl J Med. 2021;385(24):2252–63.

    Article  CAS  PubMed  Google Scholar 

  142. Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937–47.

    Article  CAS  PubMed  Google Scholar 

  143. Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(20):2061–71.

    Article  CAS  PubMed  Google Scholar 

  144. Kreutz R, Camm AJ, Rossing P. Concomitant diabetes with atrial fibrillation and anticoagulation management considerations. Eur Heart J Suppl. 2020;22(Suppl O):O78–86.

    Google Scholar 

  145. Hernandez AV, Bradley G, Khan M, Fratoni A, Gasparini A, Roman YM, et al. Rivaroxaban vs. warfarin and renal outcomes in non-valvular atrial fibrillation patients with diabetes. Eur Heart J Qual Care Clin Outcomes. 2020;6(4):301–7.

    Article  PubMed  Google Scholar 

  146. Petrie JR, Rossing PR, Campbell IW. Metformin and cardiorenal outcomes in diabetes: a reappraisal. Diabetes Obes Metab. 2020;22(6):904–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mathiesen ER. Diabetic nephropathy in pregnancy: new insights from a retrospective cohort study. Diabetologia. 2015;58(4):649–50.

    Article  PubMed  Google Scholar 

  148. Klemetti MM, Laivuori H, Tikkanen M, Nuutila M, Hiilesmaa V, Teramo K. Obstetric and perinatal outcome in type 1 diabetes patients with diabetic nephropathy during 1988-2011. Diabetologia. 2015;58(4):678–86.

    Article  CAS  PubMed  Google Scholar 

  149. Damm JA, Asbjornsdottir B, Callesen NF, Mathiesen JM, Ringholm L, Pedersen BW, et al. Diabetic nephropathy and microalbuminuria in pregnant women with type 1 and type 2 diabetes: prevalence, antihypertensive strategy, and pregnancy outcome. Diabetes Care. 2013;36(11):3489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lim LL, Lau ESH, Ozaki R, Chung H, Fu AWC, Chan W, et al. Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE program: a retrospective cohort analysis. PLoS Med. 2020;17(10):e1003367.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tu ST, Chang SJ, Chen JF, Tien KJ, Hsiao JY, Chen HC, et al. Prevention of diabetic nephropathy by tight target control in an asian population with type 2 diabetes mellitus: a 4-year prospective analysis. Arch Intern Med. 2010;170(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  152. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  153. Chan JC, So WY, Yeung CY, Ko GT, Lau IT, Tsang MW, et al. Effects of structured versus usual care on renal endpoint in type 2 diabetes: the SURE study: a randomized multicenter translational study. Diabetes Care. 2009;32(6):977–82.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gaede P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving HH, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59(11):2298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gaede P, Oellgaard J, Kruuse C, Rossing P, Parving HH, Pedersen O. Beneficial impact of intensified multifactorial intervention on risk of stroke: outcome of 21 years of follow-up in the randomised Steno-2 study. Diabetologia. 2019;62(9):1575–80.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Oellgaard J, Gaede P, Rossing P, Persson F, Parving HH, Pedersen O. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits. Kidney Int. 2017;91(4):982–8.

    Article  PubMed  Google Scholar 

  157. Oellgaard J, Gaede P, Rossing P, Rorth R, Kober L, Parving HH, et al. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised Steno-2 study. Diabetologia. 2018;61(8):1724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clicical practice guideline for the evaluation and management of chronic kidney disease. Kidney Inter Suppl. 2013;3:1–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luiza Caramori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caramori, M.L., Rossing, P. (2022). Diabetic Kidney Disease: Identification, Prevention, and Treatment. In: Basu, R. (eds) Precision Medicine in Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-98927-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98927-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98926-2

  • Online ISBN: 978-3-030-98927-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics