Skip to main content
Log in

Slowing Parkinson’s Disease Progression with Vaccination and Other Immunotherapies

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. There are several recognized pathways leading up to dopaminergic neuron loss in the substantia nigra pars compacta and other cells in the brain as a result of age-related, genetic, environmental, and other processes. Of these, the most prominent is the role played by the protein α-synuclein, which aggregates and is the primary component of Lewy bodies, the histopathological hallmark of PD. The latest disease-modifying treatment options being investigated in PD are active and passive immunization against α-synuclein. There are currently five different monoclonal antibodies investigated as passive immunization and three drugs being studied as active immunization modalities in PD. These work through different mechanisms but with a common goal—to minimize or prevent α-synuclein-driven neurotoxicity by reducing α-synuclein synthesis, increasing α-synuclein degradation, and preventing aggregation and propagation from cell to cell. These promising strategies, along with other potential therapies, may favorably alter disease progression in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91:795–808.

    Article  PubMed  Google Scholar 

  2. Hornykiewicz O. L-DOPA. J Parkinsons Dis. 2017;7:S3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  5. Coon EA, Singer W. Synucleinopathies. Contin Lifelong Learn Neurol. 2020;26:72–92.

    Article  Google Scholar 

  6. Shahnawaz M, Mukherjee A, Pritzkow S, et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020;578:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giguère N, Nanni SB, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol. 2018;9:455.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elfil M, Kamel S, Kandil M, Koo BB, Schaefer SM. Implications of the gut microbiome in Parkinson’s disease. Mov Disord. 2020;35:921–33.

    Article  CAS  PubMed  Google Scholar 

  9. Arotcarena ML, Dovero S, Prigent A, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain. 2020;143:1462–75.

    Article  PubMed  Google Scholar 

  10. Caputi V, Giron MC. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci. 2018;19:1689.

    Article  PubMed Central  CAS  Google Scholar 

  11. Del Tredici K, Braak H. Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol. 2016;42:33–50.

    Article  PubMed  CAS  Google Scholar 

  12. Espay AJ, Vizcarra JA, Marsili L, et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology. 2019;92:329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halliday G. Neglected cytotoxic T cell invasion of the brain: how specific for Parkinson’s disease? Brain. 2020;143:3518–21.

    Article  PubMed  Google Scholar 

  14. McGregor MM, Nelson AB. Circuit mechanisms of Parkinson’s disease. Neuron. 2019;101:1042–56.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67:715–25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thenganatt MA, Jankovic J. Parkinson Disease Subtypes. 2014;71:499–504.

    Google Scholar 

  17. Jankovic J. Parkinson’s disease tremors and serotonin. Brain. 2018;141:624–6.

    Article  PubMed  Google Scholar 

  18. Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci. 2019;12:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: from in vitro to in vivo models of Parkinson’s disease. Ageing Res Rev. 2019;50:89–101.

    Article  CAS  PubMed  Google Scholar 

  20. Espay AJ, Kalia LV, Gan-Or Z, et al. Disease modification and biomarker development in Parkinson disease: revision or reconstruction? Neurology. 2020;94:481–94.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alam P, Bousset L, Melki R, Otzen DE. α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem. 2019;150:522–34.

    Article  CAS  PubMed  Google Scholar 

  22. Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J Parkinsons Dis. 2015;5:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, Van den Haute C, Gentleman S, Melki R, Baekelandt V. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139:977–1000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DMA, Hasegawa M. Prion-like spreading of pathological α-synuclein in brain. Brain. 2013;136:1128–38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li JY, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.

    Article  CAS  PubMed  Google Scholar 

  27. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14:504–6.

    Article  CAS  PubMed  Google Scholar 

  28. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med. 2012;209:975–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sacino AN, Brooks M, Thomas MA, et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA. 2014;111:10732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Masuda-Suzukake M, Nonaka T, Hosokawa M, Kubo M, Shimozawa A, Akiyama H, Hasegawa M. Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun. 2014. https://doi.org/10.1186/S40478-014-0088-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hadi F, Akrami H, Totonchi M, Farhadi A, Barzegar A, Massood Nabavi S, Shahpasand K. α-Synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson’s disease. J Neurochem. 2020;157:727–51.

    Article  CAS  Google Scholar 

  32. Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov Disord. 2017;32:1504–23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Volc D, Poewe W, Kutzelnigg A, et al. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial. Lancet Neurol. 2020;19:591–600.

    Article  CAS  PubMed  Google Scholar 

  34. Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system—associations, mechanisms and therapeutics. Nat Rev Neurol. 2020;16:303–18.

    Article  PubMed  Google Scholar 

  35. Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brioschi S, Colonna M. The CNS immune-privilege goes down the drain(age). Trends Pharmacol Sci. 2019;40:1–3.

    Article  CAS  PubMed  Google Scholar 

  37. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370:50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duffy MF, Collier TJ, Patterson JR, et al. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation. 2018;15:1–18.

    CAS  Google Scholar 

  39. Doorn KJ, Moors T, Drukarch B, van de Berg WDJ, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun. 2014;2:90.

    PubMed  PubMed Central  Google Scholar 

  40. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia. 2013;61:349–60.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shao W, Zhang SZ, Tang M, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αb-crystallin. Nature. 2013;494:90–4.

    Article  CAS  PubMed  Google Scholar 

  43. Sulzer D, Alcalay RN, Garretti F, et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature. 2017;546:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VMY. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem. 2018;145:489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021;20:559–72.

    Article  CAS  PubMed  Google Scholar 

  46. Jankovic J. Immunologic treatment of Parkinson’s disease. 2018;10:81–4.

    CAS  Google Scholar 

  47. Jankovic J. Pathogenesis-targeted therapeutic strategies in Parkinson’s disease. Mov Disord. 2019;34:41–4.

    Article  PubMed  Google Scholar 

  48. Savitt D, Jankovic J. Targeting α-synuclein in Parkinson’s disease: progress towards the development of disease-modifying therapeutics. Drugs. 2019;79:797–810.

    Article  CAS  PubMed  Google Scholar 

  49. Kallab M, Herrera-Vaquero M, Johannesson M, Eriksson F, Sigvardson J, Poewe W, Wenning GK, Nordström E, Stefanova N. Region-specific effects of immunotherapy with antibodies targeting α-synuclein in a transgenic model of synucleinopathy. Front Neurosci. 2018;12:452.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rockenstein E, Ostroff G, Dikengil F, et al. Combined active humoral and cellular immunization approaches for the treatment of synucleinopathies. J Neurosci. 2018;38:1000–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jankovic J, Goodman I, Safirstein B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75:1206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Masliah E, Rockenstein E, Mante M, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLoS ONE. 2011;6:e19338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, Soto J, Atiee G, Ostrowitzki S, Kinney GG. First-in-human assessment of PRX002, an anti–α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord. 2017;32:211–8.

    Article  CAS  PubMed  Google Scholar 

  54. Pagano G, Boess FG, Taylor KI, et al. A phase II study to evaluate the safety and efficacy of prasinezumab in early Parkinson’s disease (PASADENA): rationale, design, and baseline data. Front Neurol. 2021;12:1717.

    Article  Google Scholar 

  55. Pagano G, Zanigni S, Monnet A, et al (2021) Delayed-start analysis of PASADENA: a randomized phase 2 study to evaluate the safety and efficacy of prasinezumab in early Parkinson’s disease; Part 2 week 104 results. MDS Virtual Congr.

  56. Chatterjee D, Kordower JH. Immunotherapy in Parkinson’s disease: current status and future directions. Neurobiol Dis. 2019;132:104587.

    Article  CAS  PubMed  Google Scholar 

  57. Weihofen A, Liu YT, Arndt JW, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis. 2019;124:276–88.

    Article  CAS  PubMed  Google Scholar 

  58. Brys M, Fanning L, Hung S, et al. Randomized phase I clinical trial of anti–α-synuclein antibody BIIB054. Mov Disord. 2019;34:1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuchimanchi M, Monine M, Kandadi Muralidharan K, Woodward C, Penner N. Phase II dose selection for alpha synuclein-targeting antibody cinpanemab (BIIB054) based on target protein binding levels in the brain. CPT Pharmacometrics Syst Pharmacol. 2020;9:515–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schofield DJ, Irving L, Calo L, et al. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol Dis. 2019;132:104582.

    Article  CAS  PubMed  Google Scholar 

  61. ABBV-0805—Parkinson’s disease—BioArctic. https://www.bioarctic.se/en/abbv-0805-parkinsons-disease-2498/. Accessed 28 Sept 2020

  62. LU AF82422|ALZFORUM. https://www.alzforum.org/therapeutics/lu-af82422. Accessed 28 Sept 2020

  63. Mandler M, Valera E, Rockenstein E, et al. Next-generation active immunization approach for synucleinopathies: Implications for Parkinson’s disease clinical trials. Acta Neuropathol. 2014;127:861–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin J, Kim H-J, Jeon B. Immunotherapy targeting neurodegenerative proteinopathies: α-synucleinopathies and tauopathies. J Mov Disord. 2020;13:11–9.

    Article  PubMed  Google Scholar 

  65. Poewe W, Di V, Seppi K, et al. Safety and tolerability of active immunotherapy targeting α-synuclein with PD03A in patients with early Parkinson’s disease: a randomized, placebo-controlled, phase 1 study. J Parkinsons Dis. 2021;11:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meissner WG, Traon AP, Foubert-Samier A, et al. A Phase 1 randomized trial of specific active α-synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov Disord. 2020;35:1957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schneeberger A, Tierney L, Mandler M. Active immunization therapies for Parkinson’s disease and multiple system atrophy. Mov Disord. 2016;31:214–24.

    Article  PubMed  Google Scholar 

  68. Wang W, Nguyen LTT, Burlak C, et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc Natl Acad Sci USA. 2016;113:9587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Van der Perren A, Macchi F, Toelen J, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36:1559–68.

    Article  PubMed  CAS  Google Scholar 

  70. Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K. Neutralization of RANTES and Eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson disease. J Biol Chem. 2016;291:15267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Finkelstein DI, Billings JL, Adlard PA, et al. (2017) The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun. 2017;51(5):1–16.

    Google Scholar 

  72. Wrasidlo W, Tsigelny IF, Price DL, et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain. 2016;139:3217–36.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lewis J, Melrose H, Bumcrot D, et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol Neurodegener. 2008;3:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zharikov AD, Cannon JR, Tapias V, Bai Q, Horowitz MP, Shah V, El Ayadi A, Hastings TG, Greenamyre JT, Burton EA. ShRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model. J Clin Invest. 2015;125:2721–35.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mullin S, Smith L, Lee K, et al. Ambroxol for the treatment of patients with parkinson Disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol. 2020;77:427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pena-Diáz S, Ventura S. One ring is sufficient to inhibit α-synuclein aggregation. Neural Regen Res. 2022;17:508–11.

    Article  PubMed  Google Scholar 

  77. Di Maio R, Hoffman EK, Rocha EM, et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci Transl Med. 2018;10:5429.

    Article  CAS  Google Scholar 

  78. Monfrini E, Di FA. Leucine-rich repeat kinase (LRRK2) genetics and Parkinson’s disease. Adv Neurobiol. 2017;14:3–30.

    Article  PubMed  Google Scholar 

  79. Rideout R, Chartier-Harlin M, Fell M, Hirst W, Huntwork-Rodriguez S, Leyns C, Mabrouk O, Taymans J. The Current state-of-the art of LRRK2-based biomarker assay development in Parkinson’s disease. Front Neurosci. 2020;14:865.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fonseca-Ornelas L, Eisbach SE, Paulat M, Giller K, Fernández CO, Outeiro TF, Becker S, Zweckstetter M. Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun. 2014;5:5857.

    Article  CAS  PubMed  Google Scholar 

  81. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE, Lindquist S. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. 2010;107:7710–5.

    CAS  Google Scholar 

  82. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of Parkinsonism. N Engl J Med. 1967;276:374–9.

    Article  CAS  PubMed  Google Scholar 

  83. Fahn S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord. 2015;30:4–18.

    Article  CAS  PubMed  Google Scholar 

  84. Jankovic J, Okun MS, Kordower JH. Stem cells: scientific and ethical quandaries of a personalized approach to Parkinson’s disease. Mov Disord. 2020;35:1312–4.

    Article  PubMed  Google Scholar 

  85. Tarakad A, Jankovic J. Recent advances in understanding and treatment of Parkinson’s disease. Fac Rev. 2020;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang W, Hamilton JL, Kopil C, et al. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Park Dis. 2020;6:15.

    Article  Google Scholar 

  87. Nimmo JT, Verma A, Dodart JC, Wang CY, Savistchenko J, Melki R, Carare RO, Nicoll JAR. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: potential development for immunotherapy. Alzheimer’s Res Ther. 2020;12:159.

    Article  CAS  Google Scholar 

  88. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nat. 2016;5377618(537):50–6.

    Article  CAS  Google Scholar 

  89. Mullard A. Controversial Alzheimer’s drug approval could affect other diseases. Nature. 2021;595:162–3.

    Article  CAS  PubMed  Google Scholar 

  90. United Neuroscience Strengthens Vaccine Pipeline with Novel Immunotherapy for Parkinson’s Disease. https://www.prnewswire.com/news-releases/united-neuroscience-strengthens-vaccine-pipeline-with-novel-immunotherapy-for-parkinsons-disease-300749220.html. Accessed 23 Sept 2020

  91. Price DL, Koike MA, Khan A, Wrasidlo W, Rockenstein E, Masliah E, Bonhaus D. The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep. 2018;8:16165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pagan F, Hebron M, Valadez EH, et al. Nilotinib effects in Parkinson’s disease and dementia with lewy bodies. J Parkinsons Dis. 2016;6:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Simuni T, Fiske B, Merchant K, et al. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol. 2021;78:312–20.

    Article  PubMed  Google Scholar 

  94. Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357:891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Magistrelli L, Comi C. Beta2-adrenoceptor agonists in Parkinson’s disease and other synucleinopathies. J Neuroimmune Pharmacol. 2020;15:74–81.

    Article  PubMed  Google Scholar 

  96. Hopfner F, Wod M, Höglinger GU, Blaabjerg M, Rösler TW, Kuhlenbäumer G, Christensen K, Deuschl G, Pottegard A. Use of β2-Adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology. 2019;93:E135–42.

    Article  CAS  PubMed  Google Scholar 

  97. Hopfner F, Höglinger GU, Kuhlenbäumer G, Pottegård A, Wod M, Christensen K, Tanner CM, Deuschl G. β-adrenoreceptors and the risk of Parkinson’s disease. Lancet Neurol. 2020;19:247–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Jankovic.

Ethics declarations

Funding

No funding was received.

Conflict of interest

Dhanya Vijayakumar, MD declares no conflict of interest. Joseph Jankovic, MD has received grants from AbbVie Inc; Acadia Pharmaceuticals; Cerevel Therapeutics; CHDI Foundation; Dystonia Coalition; Emalex Biosciences, Inc; F. Hoffmann-La Roche Ltd; Huntington Study Group; Medtronic Neuromodulation; Merz Pharmaceuticals; Michael J Fox Foundation for Parkinson Research; National Institutes of Health; Neuraly, Inc.; Neurocrine Biosciences; Parkinson’s Foundation; Parkinson Study Group; Prilenia Therapeutics; Revance Therapeutics, Inc; and Teva Pharmaceutical Industries Ltd. He also receives consulting fees from Aeon BioPharma; Allergan, Inc; Merck & Co, Inc; Revance Therapeutics; Teva Pharmaceutical Industries Ltd. and receives royalties from Cambridge; Elsevier; Medlink: Neurology; Lippincott Williams and Wilkins; UpToDate; Wiley-Blackwell. The authors have no other relevant affiliations or financial conflict of interest with the subject discussed in the manuscript apart from those disclosed.

Ethics approval

No ethical approval required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data was obtained from previously published articles.

Code availability

Not applicable.

Author contributions

All authors made substantial contributions to drafting and revising the manuscript for intellectual content. The first draft of the manuscript was written by Dhanya Vijayakumar, MD and Joseph Jankovic, MD revised and commented on previous versions of the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, D., Jankovic, J. Slowing Parkinson’s Disease Progression with Vaccination and Other Immunotherapies. CNS Drugs 36, 327–343 (2022). https://doi.org/10.1007/s40263-022-00903-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00903-7

Navigation