Skip to main content
Log in

Targeting α-Synuclein in Parkinson’s Disease: Progress Towards the Development of Disease-Modifying Therapeutics

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD), the second most common neurodegenerative movement disorder, is characterized by progressive motor and non-motor symptoms [1]. Despite treatment with pharmacologic and surgical therapies, the disease will continue to relentlessly advance. Hence, there is a great deal of interest in potential disease-modifying therapies with the hope that the neurodegenerative process can be slowed or halted. The purpose of this review is to highlight the role toxic α-synuclein (α-syn) plays in PD pathogenesis and critically review the relevant literature about therapeutic modalities targeting α-syn. Toxic α-syn plays a key role in PD pathogenesis, disrupting important cellular functions, and, thus, targeting α-syn is a reasonable disease-modifying strategy. Current approaches under investigation include decreasing α-syn production with RNA interference (RNAi), inhibiting α-syn aggregation, promoting intracellular degradation of α-syn aggregates (via enhancing autophagy and enhancing lysosomal degradation), and promoting extracellular degradation of α-syn via active and passive immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.

  2. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. 2017;32:1264–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fox SH, Katzenschlager R, Lim S-Y, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33:1248–66.

    Article  CAS  PubMed  Google Scholar 

  4. Lotia M, Jankovic J. New and emerging medical therapies in Parkinson’s disease. Expert Opin Pharmacother. 2016;17:895–909.

    Article  CAS  PubMed  Google Scholar 

  5. Jankovic J. Pathogenesis-targeted therapeutic strategies in Parkinson’s disease. Mov Disord. 2019;34:41–4.

    Article  PubMed  Google Scholar 

  6. Spillantini GM, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  7. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science. 1996;274:1197–9.

    Article  CAS  PubMed  Google Scholar 

  8. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  9. Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol Cell. 2019;73(5):1001–1014.e8.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent BM, Tardiff DF, Piotrowski JS, Aron R, Lucas MC, Chung CY, et al. Inhibiting stearoyl-CoA desaturase ameliorates α-synuclein cytotoxicity. Cell Rep. 2018;25(2742–2754):e31.

    Google Scholar 

  11. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5:55–9.

    Article  CAS  PubMed  Google Scholar 

  12. Adler CH, Dugger BN, Hentz JG, Hinni ML, Lott DG, Driver-Dunckley E, et al. Peripheral synucleinopathy in early Parkinson’s disease: submandibular gland needle biopsy findings. Mov Disord. 2016;31:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghiglieri V, Calabrese V, Calabresi P. Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol. 2018;9:295.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998;273:9443–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bridi JC, Hirth F. Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci. 2018;12:80.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu K-P, Weinstock DS, Narayanan C, Levy RM, Baum J. Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J Mol Biol. 2009;391:784–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522:340–4.

    Article  CAS  PubMed  Google Scholar 

  18. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL, et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature. 2018;557:558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mokretar K, Pease D, Taanman J-W, Soenmez A, Ejaz A, Lashley T, et al. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain. 2018;141:2419–31.

    Article  PubMed  Google Scholar 

  20. Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH. Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Mov Disord. 2011;26:1593–604.

    Article  PubMed  Google Scholar 

  21. Blanz J, Saftig P. Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J Neurochem. 2016;139(Suppl):198–215.

    Article  CAS  PubMed  Google Scholar 

  22. Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article  CAS  PubMed  Google Scholar 

  23. Robak LA, Jansen IE, Van Rooij J, Uitterlinden AG, Kraaij R, Jankovic J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain. 2017;140:3191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34:167–79.

    Article  PubMed  Google Scholar 

  25. Rousseaux MWC, Shulman JM, Jankovic J. Progress toward an integrated understanding of Parkinson’s disease. F1000Research. 2017;6:1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singleton AB, Farrer M, Johnson J, Singleton AB, Hague S, Kachergus J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    Article  CAS  PubMed  Google Scholar 

  27. Chartier-Harlin M-C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364:1167–9.

    Article  CAS  PubMed  Google Scholar 

  28. Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol. 2017;298:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klein AD, Mazzulli JR. Is Parkinson’s disease a lysosomal disorder? Brain. 2018;141:2255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 2018;17:802–15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schlatterer SD, Acker CM, Davies P. c-Abl in neurodegenerative disease. J Mol Neurosci. 2011;45:445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaki GS, Papavassiliou AG. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromolecular Med. 2014;16:217–30.

    Article  CAS  PubMed  Google Scholar 

  33. Ko HS, Lee Y, Shin J-H, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci USA. 2010;107:16691–6.

    Article  PubMed  Google Scholar 

  34. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, et al. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brahmachari S, Karuppagounder SS, Ge P, Lee S, Dawson VL, Dawson TM, et al. c-Abl and Parkinson’s disease: mechanisms and therapeutic potential. J Parkinsons Dis. 2017;7:589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hebron ML, Lonskaya I, Moussa CE-HE-H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum Mol Genet. 2013;22:3315–28.

  37. Hebron ML, Lonskaya I, Moussa CE-H. Tyrosine kinase inhibition facilitates autophagic SNCA/α-synuclein clearance. Autophagy. 2013;9:1249–50.

  38. Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M, et al. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest. 2016;126:1–19.

    Article  Google Scholar 

  39. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;49:1511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blauwendraat C, Heilbron K, Vallerga C. Parkinson’s disease age at onset GWAS: defining heritability, genetic loci and α-synuclein mechanisms. Mov Disord. 2019;. https://doi.org/10.1101/424010.

    Article  PubMed  Google Scholar 

  41. Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018;42:72–85.

    Article  CAS  PubMed  Google Scholar 

  42. Sardi SP, Cedarbaum JM, Brundin P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord. 2018;33:684–96.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goedert M, Jakes R, Spillantini MG. The synucleinopathies: twenty years on. J Parkinsons Dis. 2017;7:S53–71.

    Google Scholar 

  44. Pihlstrøm L, Blauwendraat C, Cappelletti C, Berge-Seidl V, Langmyhr M, Henriksen SP, et al. A comprehensive analysis of SNCA-related genetic risk in sporadic Parkinson disease. Ann Neurol. 2018;84:117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petrucci S, Ginevrino M, Valente EM. Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat Disord. 2016;22(Suppl 1):S16–20.

    Article  PubMed  Google Scholar 

  46. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012;11:986–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inzelberg R, Hassin-Baer S, Jankovic J. Genetic movement disorders in patients of Jewish ancestry. JAMA Neurol. 2014;71:1567–72.

    Article  PubMed  Google Scholar 

  49. Shihabuddin LS, Brundin P, Greenamyre JT, Stephenson D, Sardi SP. New frontiers in Parkinson’s disease: from genetics to the clinic. J Neurosci. 2018;38:9375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Migdalska-Richards A, Schapira AHV. The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem. 2016;139(Suppl):77–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beavan MS, Schapira AHV. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med. 2013;45:511–21.

    Article  CAS  PubMed  Google Scholar 

  52. Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.

    Article  CAS  PubMed Central  Google Scholar 

  53. Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, et al. Survival and dementia in GBA-associated Parkinson’s disease: the mutation matters. Ann Neurol. 2016;80:662–73.

    Article  CAS  PubMed  Google Scholar 

  54. Alessi DR, Sammler E. LRRK2 kinase in Parkinson’s disease. Science. 2018;360:36–7.

    Article  CAS  PubMed  Google Scholar 

  55. Yue Z, Yang XW. Dangerous duet: LRRK2 and α-synuclein jam at CMA. Nat Neurosci. 2013;16:375–7.

    Article  CAS  PubMed  Google Scholar 

  56. West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol. 2017;298:236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Domingo A, Klein C. Genetics of Parkinson disease. Handb Clin Neurol. 2018;147:211–27.

    Article  PubMed  Google Scholar 

  58. Saunders-Pullman R, Mirelman A, Alcalay RN, Wang C, Ortega RA, Raymond D, et al. Progression in the LRRK2-associated Parkinson disease population. JAMA Neurol. 2018;75:312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marras C, Alcalay RN, Caspell-Garcia C, Coffey C, Chan P, Duda JE, et al. Motor and nonmotor heterogeneity of LRRK2-related and idiopathic Parkinson’s disease. Mov Disord. 2016;31:1192–202.

    Article  CAS  PubMed  Google Scholar 

  60. Volpicelli-Daley L, Brundin P. Prion-like propagation of pathology in Parkinson disease. Handb Clin Neurol. 2018;153:321–35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  62. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol. 2017;8:37.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78:522–9.

    Article  PubMed  Google Scholar 

  64. Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology. 2017;88:1996–2002.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Killinger BA, Madaj Z, Sikora JW, Rey N, Haas AJ, Vepa Y, et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med. 2018;10:eaar5280. https://doi.org/10.1126/scitranslmed.aar5280.

    Article  CAS  PubMed  Google Scholar 

  66. Breen DP, Halliday GM, Lang AE. Gut-brain axis and the spread of α-synuclein pathology: vagal highway or dead end? Mov Disord. 2019;34:307–16.

    Article  PubMed  Google Scholar 

  67. Surmeier DJ, Obeso JA, Halliday GM. Parkinson’s disease is not simply a prion disorder. J Neurosci. 2017;37:9799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–34.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang Z, Nie S, Chen L. Targeting prion-like protein spreading in neurodegenerative diseases. Neural Regen Res. 2018;13:1875–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–20.

  71. Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science. 2015;349:1255555.

  72. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79:940–9.

    Article  CAS  PubMed  Google Scholar 

  73. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article  CAS  PubMed  Google Scholar 

  74. Recasens A, Carballo-Carbajal I, Parent A, Bové J, Gelpi E, Tolosa E, et al. Lack of pathogenic potential of peripheral α-synuclein aggregates from Parkinson’s disease patients. Acta Neuropathol Commun. 2018;6:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(1469–1480):e12.

    Google Scholar 

  76. Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. Beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357:891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Searles Nielsen S, Gross A, Camacho-Soto A, Willis AW, Racette BA. β2-adrenoreceptor medications and risk of Parkinson disease. Ann Neurol. 2018;84:683–93.

    Article  CAS  PubMed  Google Scholar 

  78. Benito-León J, Louis ED, Bermejo-Pareja F, Neurological Disorders in Central Spain Study Group. Risk of incident Parkinson’s disease and parkinsonism in essential tremor: a population based study. J Neurol Neurosurg Psychiatry. 2009;80:423–5.

  79. Thenganatt MA, Jankovic J. The relationship between essential tremor and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S162–5.

    Article  PubMed  Google Scholar 

  80. Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol. 2006;198:382–90.

    Article  CAS  PubMed  Google Scholar 

  81. Lewis J, Melrose H, Bumcrot D, Hope A, Zehr C, Lincoln S, et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol Neurodegener. 2008;3:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lambeth LS, Smith CA. Short hairpin RNA-mediated gene silencing. Methods Mol Biol. 2013;942:205–32.

    Article  CAS  PubMed  Google Scholar 

  83. Zharikov AD, Cannon JR, Tapias V, Bai Q, Horowitz MP, Shah V, et al. shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model. J Clin Invest. 2015;125:2721–35.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xhima K, Nabbouh F, Hynynen K, Aubert I, Tandon A. Noninvasive delivery of an α-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound. Mov Disord. 2018;33:1567–79.

    Article  CAS  PubMed  Google Scholar 

  85. McCormack AL, Mak SK, Henderson JM, Bumcrot D, Farrer MJ, Di Monte DA. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One. 2010;5:e12122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanaan NM, Manfredsson FP. Loss of functional alpha-synuclein: a toxic event in Parkinson’s disease? J Parkinsons Dis. 2012;2:249–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Collier TJ, Redmond DE, Steece-Collier K, Lipton JW, Manfredsson FP. Is alpha-synuclein loss-of-function a contributor to Parkinsonian pathology? Evidence from non-human primates. Front Neurosci. 2016;10:12.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16:837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wrasidlo W, Tsigelny IF, Price DL, Dutta G, Rockenstein E, Schwarz TC, et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain. 2016;139:3217–36.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Koike M, Price D, White B, Rockenstein E, Wrasidlo W, Tsigelny I, et al. The novel alpha-synuclein stabilizer NPT200-11 improves behavior, neuropathology and biochemistry in the murine thy1-ASYN transgenic model of Parkinson’s disease [poster]. Society for Neuroscience Congress, 15–19 Nov 2014. Washington, DC; 2014.

  91. Szoke B, Wrasidlo W, Stocking E, Tsigelny I, Schwartz T, Konrat R, et al. Biophysical characterization of the interaction of NPT200-11 with alpha-synuclein [poster]. Society for Neuroscience Congress, 15–19 Nov 2014. Washington, DC; 2014.

  92. Krishnan R, Tsubery H, Proschitsky MY, Asp E, Lulu M, Gilead S, et al. A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J Mol Biol. 2014;426:2500–19.

    Article  CAS  PubMed  Google Scholar 

  93. Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut P-O, Tamburrino A, et al. Targeting α-synuclein: therapeutic options. Mov Disord. 2016;31:882–8.

    Article  CAS  PubMed  Google Scholar 

  94. Levin J, Schmidt F, Boehm C, Prix C, Bötzel K, Ryazanov S, et al. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol. 2014;127:779–80.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013;125:795–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Deeg AA, Reiner AM, Schmidt F, Schueder F, Ryazanov S, Ruf VC, et al. Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to α-synuclein aggregates. Biochim Biophys Acta. 2015;1850:1884–90.

    Article  CAS  PubMed  Google Scholar 

  97. Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet. 1987;2:1219–20.

    Article  CAS  PubMed  Google Scholar 

  98. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem. 1989;52:1830–6.

    Article  CAS  PubMed  Google Scholar 

  99. Mandel S, Maor G, Youdim MBH. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol −)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24:401–16.

    Article  CAS  PubMed  Google Scholar 

  100. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal. 2014;21:195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Finkelstein DI, Billings JL, Adlard PA, Ayton S, Sedjahtera A, Masters CL, et al. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun. 2017;5:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hung S-Y, Fu W-M. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci. 2017;24:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA. 2013;110:E1817–26.

    Article  PubMed  Google Scholar 

  104. Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med. 2013;19:51–60.

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, et al. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med. 2016;8:368ra174.

  106. Erlich S, Shohami E, Pinkas-Kramarski R. Neurodegeneration induces upregulation of Beclin 1. Autophagy. 2:49–51.

  107. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118:2190–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009;29:13578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CE-H. Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in α-synucleinopathy. J Clin Cell Immunol. 2014;5:259.

  110. Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, et al. Nilotinib effects in Parkinson’s disease and dementia with Lewy bodies. J Parkinsons Dis. 2016;6:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wyse RK, Brundin P, Sherer TB. Nilotinib—differentiating the hope from the hype. J Parkinsons Dis. 2016;6:519–22.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Robledo I, Jankovic J. Media hype: patient and scientific perspectives on misleading medical news. Mov Disord. 2017;32:1319–23.

    Article  PubMed  Google Scholar 

  113. Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol. 2015;125:47–62.

    Article  CAS  PubMed  Google Scholar 

  114. Migdalska-Richards A, Ko WKD, Li Q, Bezard E, Schapira AHV. Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse. 2017;71:e21967.

    Article  CAS  PubMed Central  Google Scholar 

  115. Pchelina SN, Nuzhnyi EP, Emelyanov AK, Boukina TM, Usenko TS, Nikolaev MA, et al. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases. Neurosci Lett. 2014;583:188–93.

    Article  CAS  PubMed  Google Scholar 

  116. Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron. 2018;97(92–107):e10.

    Google Scholar 

  117. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018;17:641–59.

    Article  CAS  PubMed  Google Scholar 

  118. Fuji RN, Flagella M, Baca M, Baptista MAS, Brodbeck J, Chan BK, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15.

  119. Zhao HT, John N, Delic V, Ikeda-Lee K, Kim A, Weihofen A, et al. LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson’s disease mouse model. Mol Ther Nucleic Acids. 2017;8:508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lang AE, Espay AJ. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov Disord. 2018;33:660–77.

    Article  PubMed  Google Scholar 

  121. Denali Therapeutics announces positive clinical results from LRRK2 inhibitor program for Parkinson’s disease. 2018. http://investors.denalitherapeutics.com/news-releases/news-release-details/denali-therapeutics-announces-positive-clinical-results-lrrk2#ir-pages.

  122. Witoelar A, Jansen IE, Wang Y, Desikan RS, Gibbs JR, Blauwendraat C, et al. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol. 2017;74:780–92.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature. 2017;546:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dhillon J-KS, Riffe C, Moore BD, Ran Y, Chakrabarty P, Golde TE, et al. A novel panel of α-synuclein antibodies reveal distinctive staining profiles in synucleinopathies. PLoS One. 2017;12:e0184731.

  125. Lawand NB, Saadé NE, El-Agnaf OM, Safieh-Garabedian B. Targeting α-synuclein as a therapeutic strategy for Parkinson’s disease. Expert Opin Ther Targets. 2015;19:1351–60.

    Article  CAS  PubMed  Google Scholar 

  126. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, et al. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 2015;14:855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jankovic J. Immunologic treatment of Parkinson’s disease. Immunotherapy. 2018;10:81–4.

    Article  CAS  PubMed  Google Scholar 

  128. Schneeberger A, Tierney L, Mandler M. Active immunization therapies for Parkinson’s disease and multiple system atrophy. Mov Disord. 2016;31:214–24.

    Article  PubMed  Google Scholar 

  129. Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol. 2014;127:861–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kingwell K. Zeroing in on neurodegenerative α-synuclein. Nat Rev Drug Discov. 2017;16:371–3.

    Article  CAS  PubMed  Google Scholar 

  131. Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One. 2011;6:e19338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bergström A-L, Kallunki P, Fog K. Development of passive immunotherapies for synucleinopathies. Mov Disord. 2016;31:203–13.

    Article  CAS  PubMed  Google Scholar 

  133. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci. 2014;34:9441–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, et al. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord. 2017;32:211–8.

    Article  CAS  PubMed  Google Scholar 

  135. Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75:1206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brys M, Ellenbogen A, Fanning N, Penner N, Yang M, Welch M, et al. Randomized, double-blind, placebo-controlled, single ascending dose study of anti-alpha-synuclein antibody BIIB054 in patients with Parkinson’s disease. Neurology. 2018;90(15 Suppl):S26.001. http://n.neurology.org/content/90/15_Supplement/S26.001. Accessed 24 Mar 2019.

  137. Weihofen A, Liu Y, Arndt JW, Huy C, Quan C, Smith BA, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis. 2018;124:276–88.

    Article  CAS  PubMed  Google Scholar 

  138. Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep. 2017;7:1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Jankovic.

Ethics declarations

Funding

No funding was received for the publication of this review

Conflict of Interest

Dr. Daniel Savitt declares that there are no conflicts of interest relevant to this work. Dr. Joseph Jankovic declares the following: research/training funding—Allergan, Inc., CHDI Foundation, Civitas/Acorda Therapeutics, Dystonia Coalition, Dystonia Medical Research Foundation, F. Hoffmann-La Roche Ltd, Huntington Study Group, Medtronic Neuromodulation, Merz Pharmaceuticals, Michael J. Fox Foundation for Parkinson Research, National Institutes of Health, Neurocrine Biosciences, Parkinson’s Foundation, Nuvelution, Parkinson Study Group, Pfizer Inc., Prothena Biosciences Inc., Psyadon Pharmaceuticals, Inc., Revance Therapeutics, Inc., Teva Pharmaceutical Industries Ltd, and US WorldMeds; consultant/advisory board—Allergan, Inc., Merz Pharmaceuticals, Prothena Biosciences Inc., Retrophin, Inc.–Parexel, Revance Therapeutics, Inc., and Teva Pharmaceutical Industries Ltd; royalties—Cambridge, Elsevier, Future Science Group, Hodder Arnold, Medlink: Neurology, Lippincott Williams and Wilkins, and Wiley-Blackwell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savitt, D., Jankovic, J. Targeting α-Synuclein in Parkinson’s Disease: Progress Towards the Development of Disease-Modifying Therapeutics. Drugs 79, 797–810 (2019). https://doi.org/10.1007/s40265-019-01104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01104-1

Navigation