Skip to main content
Log in

Glatiramer Acetate: A Review of Its Use in Patients with Relapsing-Remitting Multiple Sclerosis and in Delaying the Onset of Clinically Definite Multiple Sclerosis

  • Adis Drug Evaluation
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Glatiramer acetate (Copaxone®) is a synthetic analogue of the multiple sclerosis (MS)-associated antigen, myelin basic protein. Although its exact mechanisms of action in MS remain to be fully elucidated, the key mechanisms of action of glatiramer acetate appear to be modulation of the inflammatory response and neuroprotective and/or neuroregenerative effects. Subcutaneous glatiramer acetate is indicated for the treatment of adult patients with relapsing-remitting MS (RRMS) and the treatment of patients who have experienced a well-defined first clinical episode and have magnetic resonance imaging (MRI) features consistent with MS or have been determined to be at high risk of developing clinically definite MS (CDMS). In clinical trials in patients with RRMS, glatiramer acetate reduced the frequency of relapses and reduced the burden and activity of disease on MRI, was more effective than placebo and showed generally similar efficacy to subcutaneous interferon (IFN) β-1a and IFNβ-1b. Furthermore, the beneficial effects of glatiramer acetate were sustained during up to 15 years of treatment in an extension study. In patients with clinically isolated syndrome (CIS), glatiramer acetate significantly delayed the onset of CDMS compared with placebo. The drug was generally well tolerated in these patient populations, with injection-site reactions being the most commonly occurring adverse events. Therefore, glatiramer acetate remains a valuable first-line option in the treatment of RRMS and is an option for delaying the onset of CDMS in patients with CIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Atlas: multiple sclerosis resources in the world. 2008. http://www.who.int/mental_health/neurology/Atlas_MS_WEB.pdf. Accessed 15 Jul 2013.

  2. Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180–8.

    Article  PubMed  CAS  Google Scholar 

  3. Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000;343(13):938–52.

    Article  PubMed  CAS  Google Scholar 

  4. Menge T, Weber MS, Hemmer B, et al. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs. 2008;68(17):2445–68.

    Article  PubMed  CAS  Google Scholar 

  5. Stuve O, Bennett JL, Hemmer B, et al. Pharmacological treatment of early multiple sclerosis. Drugs. 2008;68(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  6. Lipsy RJ, Schapiro RT, Prostko CR. Current and future directions of MS management: key considerations for managed care pharmacists. J Manag Care Pharm. 2009;15(9 Suppl a):S2–15.

    Google Scholar 

  7. Johnson KP. Risks vs benefits of glatiramer acetate: a changing perspective as new therapies emerge for multiple sclerosis. Ther Clin Risk Manag. 2010;6:153–72.

    Article  PubMed  CAS  Google Scholar 

  8. Lalive PH, Neuhaus O, Benkhoucha M, et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs. 2011;25(5):401–14.

    Article  PubMed  CAS  Google Scholar 

  9. Carter NJ, Keating GM. Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. Drugs. 2010;70(12):1545–77.

    Article  PubMed  CAS  Google Scholar 

  10. Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev. 2013;12(5):543–53.

    Article  PubMed  CAS  Google Scholar 

  11. Jalilian B, Einarsson HB, Vorup-Jensen T. Glatiramer acetate in treatment of multiple sclerosis: a toolbox of random co-polymers for targeting inflammatory mechanisms of both the innate and adaptive immune system? Int J Mol Sci. 2012;13(11):14579–605.

    Article  PubMed  CAS  Google Scholar 

  12. Blanchette F, Neuhaus O. Glatiramer acetate: evidence for a dual mechanism of action. J Neurol. 2008;255(Suppl 1):26–36.

    Article  PubMed  CAS  Google Scholar 

  13. Simpson D, Noble S, Perry C. Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis. CNS Drugs. 2002;16(12):825–50.

    Article  PubMed  CAS  Google Scholar 

  14. Arnon R, Aharoni R. Neurogenesis and neuroprotection in the CNS: fundamental elements in the effect of glatiramer acetate on treatment of autoimmune neurological disorders. Mol Neurobiol. 2007;36(3):245–53.

    Article  PubMed  CAS  Google Scholar 

  15. Tumani H, Kassubek J, Hijazi M, et al. Patterns of Th1/Th2 cytokines predict clinical response in multiple sclerosis patients treated with glatiramer acetate. Eur Neurol. 2011;65(3):164–9.

    Article  PubMed  CAS  Google Scholar 

  16. Oreja-Guevara C, Ramos-Cejudo J, Aroeira LS, et al. TH1/TH2 cytokine profile in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate or natalizumab. BMC Neurol. 2012;12:95.

    Article  PubMed  CAS  Google Scholar 

  17. Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA. 2000;97(13):7452–7.

    Article  PubMed  CAS  Google Scholar 

  18. Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler. 2001;7(4):209–19.

    PubMed  CAS  Google Scholar 

  19. Chen M, Conway K, Johnson KP, et al. Sustained immunological effects of glatiramer acetate in patients with multiple sclerosis treated for over 6 years. J Neurol Sci. 2002;201(1–2):71–7.

    Article  PubMed  CAS  Google Scholar 

  20. Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest. 2000;105(7):967–76.

    Article  PubMed  CAS  Google Scholar 

  21. Miller A, Shapiro S, Gershtein R, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone®): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol. 1998;92(1–2):113–21.

    Article  PubMed  CAS  Google Scholar 

  22. Kim HJ, Ifergan I, Antel JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol. 2004;172(11):7144–53.

    PubMed  CAS  Google Scholar 

  23. Sanna A, Fois ML, Arru G, et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exper Immunol. 2006;143(2):357–62.

    Article  CAS  Google Scholar 

  24. Gilli F, Navone ND, Valentino P, et al. Classification of individuals based on ex-vivo glatiramer acetate-induced interferon- and interleukin-4 response. Mult Scler. 2012;18(10):1484–92.

    Article  PubMed  Google Scholar 

  25. Valenzuela RM, Costello K, Chen M, et al. Clinical response to glatiramer acetate correlates with modulation of IFN-gamma and IL-4 expression in multiple sclerosis. Mult Scler. 2007;13(6):754–62.

    Article  PubMed  CAS  Google Scholar 

  26. Chiarini M, Sottini A, Ghidini C, et al. Renewal of the T-cell compartment in multiple sclerosis patients treated with glatiramer acetate. Mult Scler. 2010;16(2):218–27.

    Article  PubMed  CAS  Google Scholar 

  27. Ratchford JN, Endres CJ, Hammoud DA, et al. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol. 2012;259(6):1199–205.

    Article  PubMed  CAS  Google Scholar 

  28. Sellebjerg F, Hesse D, Limborg S, et al. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis. Mult Scler. 2013;19(2):179–87.

    Article  PubMed  CAS  Google Scholar 

  29. Pul R, Morbiducci F, Skuljec J, et al. Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS ONE. 2012;7(12):e51867.

    Article  PubMed  CAS  Google Scholar 

  30. Burger D, Molnarfi N, Weber MS, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1β in human monocytes and multiple sclerosis. Proc Natl Acad Sci USA. 2009;106(11):4355–9.

    Article  PubMed  CAS  Google Scholar 

  31. Stasiolek M, Bayas A, Kruse N, et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain. 2006;129(Pt 5):1293–305.

    Article  PubMed  Google Scholar 

  32. Hoglund RA, Holmoy T, Harbo HF, et al. A one year follow-up study of natural killer and dendritic cells activities in multiple sclerosis patients receiving glatiramer acetate (GA). PLoS ONE. 2013;8(4):e62237.

    Article  PubMed  Google Scholar 

  33. Hestvik AL, Skorstad G, Price DA, et al. Multiple sclerosis: glatiramer acetate induces anti-inflammatory T cells in the cerebrospinal fluid. Mult Scler. 2008;14(6):749–58.

    Article  PubMed  CAS  Google Scholar 

  34. Teva Neuroscience Inc. COPAXONE (glatiramer acetate) solution for subcutaneous injection: USA prescribing information 2012. http://copaxone.com/pdfs/PrescribingInformation.aspx. Accessed 16 Sep 2013.

  35. Sellebjerg F, Hedegaard CJ, Krakauer M, et al. Glatiramer acetate antibodies, gene expression and disease activity in multiple sclerosis. Mult Scler. 2012;18(3):305–13.

    Article  PubMed  CAS  Google Scholar 

  36. Teitelbaum D, Brenner T, Abramsky O, et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler. 2003;9(6):592–9.

    Article  PubMed  CAS  Google Scholar 

  37. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol. 2001;49(3):290–7.

    Article  PubMed  CAS  Google Scholar 

  38. Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology. 2001;57(4):731–3.

    Article  PubMed  CAS  Google Scholar 

  39. Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9700):1503–11.

    Article  PubMed  CAS  Google Scholar 

  40. Arnold DL, Campagnolo D, Panitch H, et al. Glatirmaer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J Neurol. 2008;255:1473–8.

    Article  PubMed  CAS  Google Scholar 

  41. Waschbisch A, Atiya M, Linker RA, et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS ONE. 2011;6(9):e24604.

    Article  PubMed  CAS  Google Scholar 

  42. Achiron A, Feldman A, Gurevich M. Molecular profiling of glatiramer acetate early treatment effects in multiple sclerosis. Dis Markers. 2009;27(2):63–73.

    Article  PubMed  CAS  Google Scholar 

  43. Bakshi S, Chalifa-Caspi V, Plaschkes I, et al. Gene expression analysis reveals functional pathways of glatiramer acetate activation. Expert Opin Ther Targets. 2013;17(4):351–62.

    Article  PubMed  CAS  Google Scholar 

  44. Teva Pharmaceuticals Ltd. Summary of product characteristics: copaxone 20 mg/mL, solution for injection, pre-filled syringe. 2013. http://www.medicines.org.uk/emc/medicine/17516/SPC/Copaxone+20mg+ml%2c+Solution+For+Injection%2c+Pre-Filled+Syringe/. Accessed 16 Sep 2013.

  45. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45(7):1268–76.

    Article  PubMed  CAS  Google Scholar 

  46. Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7(10):903–14.

    Article  PubMed  CAS  Google Scholar 

  47. O’Connor P, Filippi M, Arnason B, et al. 250 μg or 500 μg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8(10):889–97.

    Article  PubMed  Google Scholar 

  48. Cadavid D, Wolansky LJ, Skurnick J, et al. Efficacy of treatment of MS with IFNβ-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology. 2009;72:1976–83.

    Article  PubMed  CAS  Google Scholar 

  49. Johnson KP, Brooks BR, Ford CC, et al. Glatiramer acetate (Copaxone): comparison of continuous versus delayed therapy in a six-year organized multiple sclerosis trial. Mult Scler. 2003;9(6):585–91.

    Article  PubMed  CAS  Google Scholar 

  50. Johnson KP, Brooks BR, Cohen JA, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1998;50(3):701–8.

    Article  PubMed  CAS  Google Scholar 

  51. Wolinsky JS, Narayana PA, Johnson KP, et al. United States open-label glatiramer acetate extension trial for relapsing multiple sclerosis: MRI and clinical correlates. Mult Scler. 2001;7:33–41.

    PubMed  CAS  Google Scholar 

  52. Johnson KP, Ford CC, Lisak RP, et al. Neurologic consequence of delaying glatiramer acetate therapy for multiple sclerosis: 8-year data. Acta Neurol Scand. 2005;111(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  53. Ford CC, Johnson KP, Lisak RP, et al. A prospective open-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler. 2006;12(3):309–20.

    Article  PubMed  CAS  Google Scholar 

  54. Ford C, Goodman AD, Johnson K, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler. 2010;16(3):342–50.

    Article  PubMed  CAS  Google Scholar 

  55. Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology. 2000;54(4):813–7.

    Article  PubMed  CAS  Google Scholar 

  56. Schwid SR, Goodman AD, Weinstein A, et al. Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci. 2007;255(1–2):57–63.

    Article  PubMed  Google Scholar 

  57. Wolinsky JS, Comi G, Filippi M, et al. Copaxone’s effect on MRI-monitored disease in relapsing MS is reproducible and sustained. Neurology. 2002;59(8):1284–6.

    Article  PubMed  CAS  Google Scholar 

  58. Stourac P, Praksova P, Kontrova I, et al. Efficacy of glatiramer acetate in Czech multicentre observational study in the period 2006-2010 [abstract no. P1041]. Mult Scler. 2011;17(Suppl):S475.

    Google Scholar 

  59. Castelli-Haley J, Oleen-Burkey MA, Lage MJ, et al. Glatiramer acetate and interferon beta-1a for intramuscular administration: a study of outcomes among multiple sclerosis intent-to-treat and persistent-use cohorts. J Med Econ. 2010;13(3):464–71.

    Article  PubMed  Google Scholar 

  60. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis [Erratum appears in N Engl J Med. 2012 Oct 25;367(17):1673]. N Engl J Med. 2012;367(12):1087–97.

    Article  PubMed  CAS  Google Scholar 

  61. Ziemssen T, Hoffman J, Apfel R, et al. Effects of glatiramer acetate on fatigue and days of absence from work in first-time treated relapsing-remitting multiple sclerosis. Health Qual Life Outcomes. 2008;6:67.

    Article  PubMed  Google Scholar 

  62. Jongen PJ, Lehnick D, Sanders E, et al. Health-related quality of life in relapsing remitting multiple sclerosis patients during treatment with glatiramer acetate: a prospective, observational, international, multi-centre study. Health Qual Life Outcomes. 2010;8:133.

    Article  PubMed  Google Scholar 

  63. Ziemssen T, Carra A, De Klippel N, et al. Insights from the Coptimize study: characteristics of relapsing-remitting multiple sclerosis patients switching to glatiramer acetate [abstract no. P510]. Mult Scler. 2011;17:S218.

    Google Scholar 

  64. Zwibel HL. Glatiramer acetate in treatment-naive and prior interferon-β-1b-treated multiple sclerosis patients. Acta Neurol Scand. 2006;113(6):378–86.

    Article  PubMed  CAS  Google Scholar 

  65. Meca-Lallana JE, de Mingo-Casado P, Amorin-Diaz M, et al. Effects of glatiramer acetate on spasticity in previously interferon-β-treated and treatment-naive patients with relapsing-remitting multiple sclerosis: a prospective, nonrandomized, open-label, uncontrolled, observational pilot study. Clin Ther. 2010;32(6):1061–6.

    Article  PubMed  CAS  Google Scholar 

  66. Rossi S, Motta C, Studer V, et al. Effect of glatiramer acetate on disease reactivation in MS patients discontinuing natalizumab. Eur J Neurol. 2013;20(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  67. Rovaris M, Comi G, Rocca MA, et al. Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain. 2001;124(9):1803–12.

    Article  PubMed  CAS  Google Scholar 

  68. Filippi M, Rocca MA, Camesasca F, et al. Interferon β-1b and glatiramer acetate effects on permanent black hole evolution. Neurology. 2011;76(14):1222–8.

    Article  PubMed  CAS  Google Scholar 

  69. Cadavid D, Cheriyan J, Skurnick J, et al. New acute and chronic black holes in patients with multiple sclerosis randomised to interferon beta-1b or glatiramer acetate. J Neurol Neurosurg Psychiatry. 2009;80(12):1337–43.

    Article  PubMed  CAS  Google Scholar 

  70. Vollmer T, Panitch H, Bar-Or A, et al. Galtiramer acetate after induction therapy with mitoxantrone in relapsing multiple sclerosis. Mult Scler. 2008;14(5):663–70.

    Article  PubMed  CAS  Google Scholar 

  71. Lindsey JW, Scott TF, Lynch SG, et al. The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: design and baseline characteristics. Mult Scler Relat Disord. 2012;1(2):81–6.

    Article  PubMed  CAS  Google Scholar 

  72. Lublin FD, Cofield SS, Cutter GR, et al. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol. 2013;73:327–40.

    Article  PubMed  CAS  Google Scholar 

  73. Goodman AD, Rossman H, Bar-Or A, et al. GLANCE: results of a phase 2, randomized, double-blind, placebo-controlled study. Neurology. 2009;72(9):806–12.

    Article  PubMed  CAS  Google Scholar 

  74. Comi G, Martinelli V, Rodegher M, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler. 2013;19(8):1074–83.

    Article  PubMed  Google Scholar 

  75. Arnold DL, Narayana S, Antel S. Neuroprotection with glatiramer acetate: evidence from the PreCISe trial. J Neurol. 2013;260:1901–6.

    Article  PubMed  CAS  Google Scholar 

  76. Salminen HJ, Leggett H, Boggild M. Glatiramer acetate exposure in pregnancy: preliminary safety and birth outcomes. J Neurol. 2010;257(12):2020–3.

    Article  PubMed  CAS  Google Scholar 

  77. Giannini M, Portaccio E, Ghezzi A, et al. Pregnancy and fetal outcomes after glatiramer acetate exposure in patients with multiple sclerosis: a prospective observational multicentric study. BMC Neurol. 2012;12:124.

    Article  PubMed  CAS  Google Scholar 

  78. Fragoso YD, Finkelsztejn A, Kaimen-Maciel DR, et al. Long-term use of glatiramer acetate by 11 pregnant women with multiple sclerosis: a retrospective, multicentre case series. CNS Drugs. 2010;24(11):969–76.

    PubMed  CAS  Google Scholar 

  79. Teva Pharmaceuticals Ltd. Public Assessment Report Mutual Recognition Procedure: copaxone 20 mg/mL soultion for injection, prefilled syringe. 2008. http://www.mhra.gov.uk/home/groups/l-unit1/documents/websiteresources/con025676.pdf. Accessed 27 May 2013.

  80. National Collaborating Centre for Chronic Conditions. Multiple sclerosis: national clinical guideline for the diagnosis and management in primary and secondary care. 2004. http://www.ncbi.nlm.nih.gov/books/NBK48919/pdf/TOC.pdf. Accessed 16 Jul 2013.

  81. National Institute for Clinical Excellence. Multiple sclerosis: management of multiple sclerosis in primary and secondary care (Clinical Guideline 8). 2003. http://www.nice.org.uk/nicemedia/pdf/cg008guidance.pdf. Accessed 17 Jul 2013.

  82. National Clinical Advisory Board of the National Multiple Sclerosis Society. Treatment recommendations for physicians: disease management consensus statement. 2007. http://www.nationalmssociety.org/about-multiple-sclerosis/treatments/download.aspx?id=8. Accessed 16 Jul 2013.

  83. Association of British Neurologists. Association of British Neurologists: revised (2009) guidelines for prescribing in multiple sclerosis. 2009. http://www.theabn.org/abn/userfiles/file/abn_ms_guidelines_2009_final.pdf. Accessed 16 Jul 2013.

  84. Goodin DS, Frohman EM, Garmany GP, et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology. 2002;58(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  85. Scott LJ. Fingolimod: a review of its use in the management of relapsing-remitting multiple sclerosis. CNS Drugs. 2011;25(8):673–98.

    Article  PubMed  CAS  Google Scholar 

  86. Hohlfeld R, Barkhof F, Polman C. Future clinical challenges in multiple sclerosis: relevance of sphingosine 1-phosphate receptor modulator therapy. Neurology. 2011;76(8 Suppl 3):S28–37.

    Article  PubMed  CAS  Google Scholar 

  87. European Medicines Agency. Gilenya: summary of product characteristics 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002202/WC500104528.pdf. Accessed 22 Jul 2013.

  88. Novartis Pharmaceuticals Corporation. Gilenya™: USA prescribing information. 2012. http://www.pharma.us.novartis.com/cs/www.pharma.us.novartis.com/product/pi/pdf/gilenya.pdf. Accessed 22 Jul 2013.

  89. USA Food and Drug Administration. FDA approves new multiple sclerosis treatment: Tecfidera. 2013. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm345528.htm. Accessed 23 Jul 2013.

  90. European Medicines Agency. Summary of opinion (initial authorisation): tecfidera (dimethyl fumarate). 2013. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002601/smops/Positive/human_smop_000498.jsp&mid=WC0b01ac058001d127&source=homeMedSearch&category=human. Accessed 23 Jul 2013.

  91. European Medicines Agency. Summary of opinion (initial authorisation): Aubagio (teriflunomide). 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002514/WC500144913.pdf. Accessed 23 Jul 2013.

  92. USA Food and Drug Administration. FDA approves new multiple sclerosis treatment: Aubagio (teriflunomide). 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002514/WC500144913.pdf. Accessed 23 Jul 2013.

  93. Halpern R, Agarwal S, Borton L, et al. Adherence and persistence among multiple sclerosis patients after one immunomodulatory therapy failure: retrospective claims analysis. Adv Ther. 2011;28(9):761–75.

    Article  PubMed  CAS  Google Scholar 

  94. Devonshire V, Lapierre Y, Macdonell R, et al. The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2011;18(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  95. Coyle PK. Early treatment of multiple sclerosis to prevent neurologic damage. Neurol. 2008;71(24 Suppl 3):S3–7.

    CAS  Google Scholar 

  96. Khan O, Rieckmann P, Boyko A, et al. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013;73(6):705–13.

    Article  PubMed  CAS  Google Scholar 

  97. Sharac J, McCrone P, Sabes-Figuera R. Pharmacoeconomic considerations in the treatment of multiple sclerosis. Drugs. 2010;70(13):1677–91.

    Article  PubMed  CAS  Google Scholar 

  98. Bell C, Graham J, Earnshaw S, et al. Cost-effectiveness of four immunomodulatory therapies for relapsing-remitting multiple sclerosis: a Markov model based on long-term clinical data. J Manag Care Pharm. 2007;13(3):245–61.

    PubMed  Google Scholar 

  99. Tappenden P, McCabe C, Chilcott J, et al. Cost-effectiveness of disease-modifying therapies in the management of multiple sclerosis for the Medicare population. Value Health. 2009;12(5):657–65.

    Article  PubMed  Google Scholar 

Download references

Disclosure

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on the article. Changes resulting from comments received were made by the author based on their scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley J. Scott.

Additional information

The manuscript was reviewed by: R. Arnon, Weizmann Institute of Science, Department of Immunology, Rehovot, Israel; J. L. Bainbridge, University of Colorado Anschutz Medical Campus, School of Pharmacy and Pharmaceutical Sciences, Department of Clinical Pharmacy, Aurora, CO, USA; M. Filippi, Scientific Institute Ospedale San Raffaele, Department of Neuroscience, Neuroimaging Research Unit, Milan, Italy; M.S. Freedman, University of Ottawa, Ottawa Hospital Research Institute, Multiple Sclerosis Research Clinic, The Ottawa Hospital General Campus, Ottawa, ON, Canada; O. Neuhaus, Kliniken Landkreis Sigmaringen, Department of Neurology, Sigmaringen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, L.J. Glatiramer Acetate: A Review of Its Use in Patients with Relapsing-Remitting Multiple Sclerosis and in Delaying the Onset of Clinically Definite Multiple Sclerosis. CNS Drugs 27, 971–988 (2013). https://doi.org/10.1007/s40263-013-0117-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0117-3

Keywords

Navigation