Skip to main content

Advertisement

Log in

Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is no longer considered to be simply an autoimmune disease. In addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus aim to act within the central nervous system (CNS) by interfering with both neuroinflammation and neurodegeneration. Specific treatment strategies to autoimmune neurological disorders should aim to act within the CNS by interfering with both neuroinflammation and neurodegeneration. The cumulative effect of Glatiramer acetate (GA; Copaxone®, Copolymer 1), an approved drug for the treatment of MS, reviewed herewith, draws a direct linkage between anti-inflammatory immunomodulation, neuroprotection, neurogenesis, and therapeutic activity in the CNS. GA treatment augmented the three processes characteristic of neurogenesis, namely, neuronal progenitor cell proliferation, migration, and differentiation. The newborn neurons manifested massive migration through exciting and dormant migratory pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype, thus, counteracting the neurodegenerative course of disease. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hellings N, Raus J, Stinissen P (2002) Insights into the immunopathogenesis of multiple sclerosis. Immunol Res 25:27–51

    Article  PubMed  CAS  Google Scholar 

  2. Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis: a historical note. Brain Pathol 9:651–656

    Article  PubMed  CAS  Google Scholar 

  3. Bitsch A, Schuchardt J, Bunkowski S (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183

    Article  PubMed  Google Scholar 

  4. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  PubMed  CAS  Google Scholar 

  5. Ziemssen T (2005) Modulating processes within the central nervous system is central to therapeutic control of multiple sclerosis. J Neurol 252(Vl)38–45

    Article  CAS  Google Scholar 

  6. Feltkamp TEW (1999) The mystery of autoimmune diseases. In: The decade of autoimmunity. Elsevier, pp 1–5

  7. Ramony Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New York

    Google Scholar 

  8. Altman J, Das GD (1965) Autoradiographic and histological evidence of post-natal hippocampal neurogenesis in rats. J Comp Neurol 124:19–35

    Article  Google Scholar 

  9. Gage FH (2000) Mammalian neural stem cell. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  10. Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220–235

    PubMed  CAS  Google Scholar 

  11. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  12. Yudkin PL, Ellison GW, Ghezzi A Goodkin D, Hughe RA, McPherson K, Mertin J, Milanese C (1991) Overview of azathioprime treatment in multiple sclerosis. Lancet 338:1051–1055

    Article  PubMed  CAS  Google Scholar 

  13. Johnson KP, Knobler RL, Greenstein JL et al (1990) Recombinant beta interferon treatment of relapsing-remitting multiple sclerosis pilot study results. Neurology 40(Suppl 1):261

    Google Scholar 

  14. Jacobs LD, Cookfair DL, Rudick RA et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaboration Group (MSCRG). Ann Neurol 39:285–294

    Article  PubMed  CAS  Google Scholar 

  15. PRIM (Prevention of relapses and disability by interferon beta-1a subsequently in multiple sclerosis) study group (1998) Randomized, double blind, placebo controlled study of interferon beta-1a in relapsing-remitting multiple sclerosis: chemical results. Lancet 352:1498–1504

    Article  Google Scholar 

  16. Arnon R (1966) The development of Cop 1 (Copaxone®), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol Lett 50:1–15

    Article  Google Scholar 

  17. Teitelbaum D, Meshorer M, Hirshfeld T, Sela M, Arnon R (1971) Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1:242–248

    Article  PubMed  CAS  Google Scholar 

  18. Arnon R, Sela M (2003) Immunomodulation by the copolymer glatiramer acetate. J Mol Recognit 16:412–421

    Article  PubMed  CAS  Google Scholar 

  19. Sela M, Teitelbaum D (2001) Glatiramer acetate in the treatment of multiple sclerosis. Expert Opin Pharmacother 2:1149–1165

    Article  PubMed  CAS  Google Scholar 

  20. Wolinsky JS (2006) The use of glatiramer acetate in the treatment of multiple sclerosis. Adv Neurol 98:273–292

    PubMed  Google Scholar 

  21. Fridkis-Hareli M, Teitelbaum D, Gurevich E, Pecht I, Brautbar C, Kwon OJ, Brenner T, Arnon R, Sela M (1994) Direct binding of myelin basic protein and synthetic copolymer 1 class II major histocompatibility complex molecules on living antigen presenting cells-specificity and promiscuity. Proc Natl Acad Sci U S A 91:4872–4876

    Article  PubMed  CAS  Google Scholar 

  22. Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R (2005) Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Neurology 4:567–575

    PubMed  CAS  Google Scholar 

  23. Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 101(Suppl 2):14593–14598

    Article  PubMed  CAS  Google Scholar 

  24. Aharoni R, Teitelbaum D, Arnon R, Sela M (1999) Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 96:634–639

    Article  PubMed  CAS  Google Scholar 

  25. Lando Z, Teitelbaum D, Arnon R (1979) Effect of cyclophosphamide on suppressor cell activity in mice unresponsive to EAE. J Immunol 132:2156–2160

    Google Scholar 

  26. Aharoni R, Teitelbaum D, Arnon R (1993) T-suppressor hybridomas and IL-2 dependent lines induced by copolymer 1 or by spinal cord homogenate downregulate experimental allergic encephalomyelitis. Eur J Immunol 23:17–25

    Article  PubMed  CAS  Google Scholar 

  27. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that cross react with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826

    Article  PubMed  CAS  Google Scholar 

  28. Aharoni R, Teitelbaum D, Sela M, Arnon R (1998) Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by Copolymer 1. J Neuroimmunol 91:135–146

    Article  PubMed  CAS  Google Scholar 

  29. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer 1 (Copaxone©) implicating mechanisms of Th1 to Th2/3 immune deviation. J Neuroimmunol 92:113–121

    Article  PubMed  CAS  Google Scholar 

  30. Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis comparison of copolymer-1 reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 97:7452–7457

    Article  PubMed  CAS  Google Scholar 

  31. Duda PW, Schmied MC, Cook S, Kriegler JI, Hafler DA (2000b) Glatiramer acetate (Copaxone©) induces degenerate, TH2-polarized immune response in patients with multiple sclerosis. J Clin Invest 105:967–976

    PubMed  CAS  Google Scholar 

  32. Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela, M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against EE by copolymer. Proc Natl Acad Sci U S A 97:11472–11477

    Article  PubMed  CAS  Google Scholar 

  33. Aharoni R, Meshorer A, Sela M, Arnon R (2002) Oral treatment of mice with copolymer 1 (glatiramer acetate) results in the accumulation of specific TH2 cells in the central nervous system. J Neuroimmunol 126:58–68

    Article  PubMed  CAS  Google Scholar 

  34. Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R (2003) Glatiramer acetate specific T-cells in the brain express TH2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 100(24):14157–14162

    Article  PubMed  CAS  Google Scholar 

  35. Bettelli E, Nicholson LB, Kuchroo VK (2003) IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun 4:265–267

    Article  CAS  Google Scholar 

  36. Morris MM, Dyson H, Baker D, Harbige LS, Fazakerley JK, Amor S (1997) Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. Neuroimmunology 74:185–197

    Article  CAS  Google Scholar 

  37. Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Swhwartz M (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451

    Article  PubMed  CAS  Google Scholar 

  38. Ziemssen T, Kumpfel T, Kinkert WEF, Neuhaus O, Hohlfeld R (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125:2381–2391

    Article  PubMed  Google Scholar 

  39. Chen M, Valenzuela RM, Dhib-Jalbut S (2003) Glatiramer acetate-reactive T cells produce brain derived neurotrophic factor. J Neurol Sci 215:37–44

    Article  PubMed  CAS  Google Scholar 

  40. Aharoni R, Eylam R, Domev H, Labunsky G, Sela M, Arnon R (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102(52):19045–19050

    Article  PubMed  CAS  Google Scholar 

  41. Lessman V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospect. Prog Neurobiol 69:341–374

    Article  CAS  Google Scholar 

  42. Riley CP, Cope TC, Buck CR (2004) CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 35:771–783

    Article  PubMed  CAS  Google Scholar 

  43. Althau HH (2004) Remyelination in multiple sclerosis: a new role for neurotrophins? Prog Brain Res 146:415–432

    Article  CAS  Google Scholar 

  44. Murer MG, Yan O, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:7–124

    Article  Google Scholar 

  45. Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C, Nociti V, Tonali PA, Mirabella M (2005) Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand J Immunol 62:176–182

    Article  PubMed  CAS  Google Scholar 

  46. Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218

    Article  PubMed  CAS  Google Scholar 

  47. Stadelmann C, Kerscensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145 trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85

    Article  PubMed  Google Scholar 

  48. Aharoni R, Arnon R, Eilam R (2005) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25(36):8228–8217

    Google Scholar 

  49. Gilgum-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47:201–207

    Article  CAS  Google Scholar 

  50. Luc DC, Song H, Colamarino SA, Ming G-L, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421

    Article  CAS  Google Scholar 

  51. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in adult hippocampus. Nature 415:1000–1034

    Article  CAS  Google Scholar 

  52. Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76:223–231

    Article  PubMed  CAS  Google Scholar 

  53. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99:13211–13216

    Article  PubMed  CAS  Google Scholar 

  54. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  PubMed  CAS  Google Scholar 

  55. Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955

    Article  PubMed  CAS  Google Scholar 

  56. Chitnis T, Imitola J, Khoury SJ (2005) Therapeutic strategies to prevent neurodegeneration and promote regeneration in multiple sclerosis. Current Drug Targets Immune Endocrine and Metabolic Disorders 5:11–26

    Article  CAS  Google Scholar 

  57. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  58. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 15:165–171

    Article  Google Scholar 

  59. Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, Kramer B, Bahr M, Diem R (2004) Mechanisms and time course of neuronal degeneration experimental autoimmune encephalomyelitis. Brain Pathol 14:148–157

    Article  PubMed  Google Scholar 

  60. Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  PubMed  CAS  Google Scholar 

  61. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  PubMed  CAS  Google Scholar 

  62. O’Rourke NA, Sullivan DP, Kaznowsky CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121:2165–2176

    PubMed  CAS  Google Scholar 

  63. Gould E, Gross CG (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci 22(3):619–623

    PubMed  CAS  Google Scholar 

  64. Filippi M, Rovaris M, Rocca MA, the European/Canadian Glatiramer Acetate Study Group (2001) Glatiramer Acetate reduces the proportion of new MS lesions evolving into “black holes.” Neurology 57:731–733

    PubMed  CAS  Google Scholar 

  65. Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651

    Article  PubMed  CAS  Google Scholar 

  66. Ford CC, Johnson KP, Lisak RP, Panitch HS, Shifroni G, Wolinsky JS, the Copaxone Study Group (2006) Aprospective open-labled study of glatiramer acetate: over a decade of continuous use in multiple sclerosos patients. Mult Scler 12:309–320

    Article  PubMed  CAS  Google Scholar 

  67. Kipnis J, Yoles E, Cohen A et al (2000) T-cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451

    Article  PubMed  CAS  Google Scholar 

  68. Schori H, Kipnis J, Yoles E et al (2001) Vaccination for protection of retinalganglion cells against death from glutamate cytotoxicity and ocular hypertention: implication for glaucoma. Proc Natl Acad Sci U S A 98:3398–3403

    Article  PubMed  CAS  Google Scholar 

  69. Benner EJ, Mosley RI, Destache CJ et al (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440

    Article  PubMed  CAS  Google Scholar 

  70. Angelov DN, Waibel S, Guntinas-Lichius O et al (2004) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 101:15823–15828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Arnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnon, R., Aharoni, R. Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders. Mol Neurobiol 36, 245–253 (2007). https://doi.org/10.1007/s12035-007-8002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-8002-z

Keywords

Navigation