Skip to main content
Log in

Vitiligo Treatments: Review of Current Therapeutic Modalities and JAK Inhibitors

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Vitiligo is a chronic autoimmune disease characterized by loss of pigment of the skin, affecting 0.5–2% of the population worldwide. It can have a significant impact on patients’ quality of life. In recent years, there has been significant progress in our understanding of the pathogenesis of vitiligo. It is believed that vitiligo develops due to a complex combination of genetics, oxidative stress, inflammation, and environmental triggers. Conventional treatments include camouflage, topical corticosteroids, topical calcineurin inhibitors, oral corticosteroids, phototherapy, and surgical procedures, with the treatment regimen dependent on the patient’s preferences and characteristics. With increased understanding of the importance of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the pathogenesis of vitiligo, treatment has expanded to include the first US FDA-approved cream to repigment patients with vitiligo. This review summarizes our understanding of the major mechanisms involved in the pathogenesis of vitiligo and its most common available treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Krüger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 2012;51(10):1206–12. https://doi.org/10.1111/j.1365-4632.2011.05377.x.

    Article  PubMed  Google Scholar 

  2. Taïeb A, Picardo M. Clinical practice Vitiligo. N Engl J Med. 2009;360(2):160–9. https://doi.org/10.1056/NEJMcp0804388.

    Article  PubMed  Google Scholar 

  3. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–91. https://doi.org/10.1016/j.jaad.2010.11.061.

    Article  PubMed  Google Scholar 

  4. Sehgal VN, Srivastava G. Vitiligo: compendium of clinico-epidemiological features. Indian J Dermatol Venereol Leprol. 2007;73(3):149–56. https://doi.org/10.4103/0378-6323.32708.

    Article  PubMed  Google Scholar 

  5. Silverberg JI, Silverberg NB. Association between vitiligo extent and distribution and quality-of-life impairment. JAMA Dermatol. 2013;149(2):159–64. https://doi.org/10.1001/jamadermatol.2013.927.

    Article  PubMed  Google Scholar 

  6. Ezzedine K, Sheth V, Rodrigues M, Eleftheriadou V, Harris JE, Hamzavi IH, Pandya AG, Vitiligo Working Group. Vitiligo is not a cosmetic disease. J Am Acad Dermatol. 2015;73(5):883–5. https://doi.org/10.1016/j.jaad.2015.07.039.

    Article  PubMed  Google Scholar 

  7. Ezzedine K, Grimes PE, Meurant JM, Seneschal J, Léauté-Labrèze C, Ballanger F, Jouary T, Taïeb C, Taïeb A. Living with vitiligo: results from a national survey indicate differences between skin phototypes. Br J Dermatol. 2015;173(2):607–9. https://doi.org/10.1111/bjd.13839.

    Article  CAS  PubMed  Google Scholar 

  8. Osinubi O, Grainge MJ, Hong L, Ahmed A, Batchelor JM, Grindlay D, Thompson AR, Ratib S. The prevalence of psychological comorbidity in people with vitiligo: a systematic review and meta-analysis. Br J Dermatol. 2018;178(4):863–78. https://doi.org/10.1111/bjd.16049.

    Article  CAS  PubMed  Google Scholar 

  9. Hamidizadeh N, Ranjbar S, Ghanizadeh A, Parvizi MM, Jafari P, Handjani F. Evaluating prevalence of depression, anxiety and hopelessness in patients with Vitiligo on an Iranian population. Health Qual Life Outcomes. 2020;18(1):20. https://doi.org/10.1186/s12955-020-1278-7.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bae JM, Kim JE, Lee RW, Ju HJ, Han JH, Lee JH, Woo YR, Lee JH, Bang CH, Park CJ, Ezzedine K, Kim M. Beyond quality of life: a call for patients’ own willingness to pay in chronic skin disease to assess psychosocial burden—a multicenter, cross-sectional, prospective survey. J Am Acad Dermatol. 2021;85(5):1321–4. https://doi.org/10.1016/j.jaad.2020.09.088.

    Article  PubMed  Google Scholar 

  11. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T. Vitiligo Global Issue Consensus Conference Panelists. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1–13. https://doi.org/10.1111/j.1755-148X.2012.00997.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Taïeb A, Picardo M, VETF Members. The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res. 2007;20(1):27–35. https://doi.org/10.1111/j.1600-0749.2006.00355.x.

    Article  PubMed  Google Scholar 

  13. Gawkrodger DJ, Ormerod AD, Shaw L, Mauri-Sole I, Whitton ME, Watts MJ, Anstey AV, Ingham J, Young K, Therapy Guidelines and Audit Subcommittee, British Association of Dermatologists; Clinical Standards Department, Royal College of Physicians of London; Cochrane Skin Group. Vitiligo Society Guideline for the diagnosis and management of vitiligo. Br J Dermatol. 2008;159(5):1051–76. https://doi.org/10.1111/j.1365-2133.2008.08881.x.

    Article  CAS  PubMed  Google Scholar 

  14. Taieb A, Alomar A, Böhm M, Dell’anna ML, De Pase A, Eleftheriadou V, Ezzedine K, Gauthier Y, Gawkrodger DJ, Jouary T, Leone G, Moretti S, Nieuweboer-Krobotova L, Olsson MJ, Parsad D, Passeron T, Tanew A, van der Veen W, van Geel N, Whitton M, Wolkerstorfer A, Picardo M, Vitiligo European Task Force (VETF); European Academy of Dermatology and Venereology (EADV); Union Europeenne des MedecinsSpecialistes (UEMS). Guidelines for the management of vitiligo: the European Dermatology Forum consensus. Br J Dermatol. 2013;168(1):5–19. https://doi.org/10.1111/j.1365-2133.2012.11197.x.

    Article  CAS  PubMed  Google Scholar 

  15. Oiso N, Suzuki T, Wataya-Kaneda M, Tanemura A, Tanioka M, Fujimoto T, Fukai K, Kawakami T, Tsukamoto K, Yamaguchi Y, Sano S, Mitsuhashi Y, Nishigori C, Morita A, Nakagawa H, Mizoguchi M, Katayama I. Guidelines for the diagnosis and treatment of vitiligo in Japan. J Dermatol. 2013;40(5):344–54. https://doi.org/10.1111/1346-8138.12099.

    Article  CAS  PubMed  Google Scholar 

  16. Esmat SM, El-Tawdy AM, Hafez GA, Zeid OA, Abdel Halim DM, Saleh MA, Leheta TM, Elmofty M. Acral lesions of vitiligo: why are they resistant to photochemotherapy? J Eur Acad Dermatol Venereol. 2012;26(9):1097–104. https://doi.org/10.1111/j.1468-3083.2011.04215.x.

    Article  CAS  PubMed  Google Scholar 

  17. Gawkrodger DJ, Ormerod AD, Shaw L, Mauri-Sole I, Whitton ME, Watts MJ, Anstey AV, Ingham J, Young K. Vitiligo: concise evidence based guidelines on diagnosis and management. Postgrad Med J. 2010;86(1018):466–71. https://doi.org/10.1136/pgmj.2009.093278.

    Article  PubMed  Google Scholar 

  18. Whitton ME, Pinart M, Batchelor J, Lushey C, Leonardi-Bee J, González U. Interventions for vitiligo. Cochrane Database Syst Rev. 2010;1: CD003263. https://doi.org/10.1002/14651858.CD003263.pub4.

    Article  Google Scholar 

  19. Whitton ME, Pinart M, Batchelor J, Leonardi-Bee J, González U, Jiyad Z, Eleftheriadou V, Ezzedine K. Interventions for vitiligo. Cochrane Database Syst Rev. 2015;2: CD003263. https://doi.org/10.1002/14651858.CD003263.pub5.

    Article  Google Scholar 

  20. Whitton M, Pinart M, Batchelor JM, Leonardi-Bee J, Gonzalez U, Jiyad Z, Eleftheriadou V, Ezzedine K. Evidence-based management of vitiligo: summary of a Cochrane systematic review. Br J Dermatol. 2016;174(5):962–9. https://doi.org/10.1111/bjd.14356.

    Article  CAS  PubMed  Google Scholar 

  21. Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D, Taieb A. Vitiligo. Nat Rev Dis Primers. 2015;1:15011. https://doi.org/10.1038/nrdp.2015.11.

    Article  PubMed  Google Scholar 

  22. Spritz RA, Andersen GH. Genetics of Vitiligo. Dermatol Clin. 2017;35(2):245–55. https://doi.org/10.1016/j.det.2016.11.013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Spritz RA. Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol. 2013;40(5):310–8. https://doi.org/10.1111/1346-8138.12147.

    Article  CAS  PubMed  Google Scholar 

  24. Spritz RA. Shared genetic relationships underlying generalized vitiligo and autoimmune thyroid disease. Thyroid. 2010;20(7):745–54. https://doi.org/10.1089/thy.2010.1643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Czajkowski R, Męcińska-Jundziłł K. Current aspects of vitiligo genetics. Postepy Dermatol Alergol. 2014;31(4):247–55. https://doi.org/10.5114/pdia.2014.43497.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25. https://doi.org/10.1056/NEJMoa061592.

    Article  CAS  PubMed  Google Scholar 

  27. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362(18):1686–97. https://doi.org/10.1056/NEJMoa0908547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, Holland PJ, Birlea SA, Siebert J, Hartmann A, Lienert A, van Geel N, Lambert J, Luiten RM, Wolkerstorfer A, Wietze van der Veen JP, Bennett DC, Taïeb A, Ezzedine K, Kemp EH, Gawkrodger DJ, Weetman AP, Kõks S, Prans E, Kingo K, Karelson M, Wallace MR, McCormack WT, Overbeck A, Moretti S, Colucci R, Picardo M, Silverberg NB, Olsson M, Valle Y, Korobko I, Böhm M, Lim HW, Hamzavi I, Zhou L, Mi QS, Fain PR, Santorico SA, Spritz RA. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48(11):1418–24. https://doi.org/10.1038/ng.3680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jin Y, Birlea SA, Fain PR, Mailloux CM, Riccardi SL, Gowan K, Holland PJ, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA. Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet. 2010;42(7):576–8. https://doi.org/10.1038/ng.602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, Cole JB, Gowan K, Holland PJ, Bennett DC, Luiten RM, Wolkerstorfer A, van der Veen JP, Hartmann A, Eichner S, Schuler G, van Geel N, Lambert J, Kemp EH, Gawkrodger DJ, Weetman AP, Taïeb A, Jouary T, Ezzedine K, Wallace MR, McCormack WT, Picardo M, Leone G, Overbeck A, Silverberg NB, Spritz RA. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80. https://doi.org/10.1038/ng.2272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Spritz RA. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med. 2010;2(10):78. https://doi.org/10.1186/gm199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Birlea SA, Jin Y, Bennett DC, Herbstman DM, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Fain PR, Spritz RA. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Investig Dermatol. 2011;131(2):371–81. https://doi.org/10.1038/jid.2010.337.

    Article  CAS  PubMed  Google Scholar 

  33. Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Investig Dermatol. 2012;132(2):268–73. https://doi.org/10.1038/jid.2011.321.

    Article  CAS  PubMed  Google Scholar 

  34. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16(3):208–14. https://doi.org/10.1034/j.1600-0749.2003.00032.x.

    Article  PubMed  Google Scholar 

  35. Millington GW, Levell NJ. Vitiligo: the historical curse of depigmentation. Int J Dermatol. 2007;46(9):990–5. https://doi.org/10.1111/j.1365-4632.2007.03195.x.

    Article  PubMed  Google Scholar 

  36. Nath SK, Majumder PP, Nordlund JJ. Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am J Hum Genet. 1994;55(5):981–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Dell’Anna ML, Maresca V, Briganti S, Camera E, Falchi M, Picardo M. Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Investig Dermatol. 2001;117(4):908–13. https://doi.org/10.1046/j.0022-202x.2001.01459.x.

    Article  CAS  PubMed  Google Scholar 

  38. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Investig Dermatol. 1997;109(3):310–3. https://doi.org/10.1111/1523-1747.ep12335801.

    Article  CAS  PubMed  Google Scholar 

  39. Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 2001;144(1):55–65. https://doi.org/10.1046/j.1365-2133.2001.03952.x.

    Article  CAS  PubMed  Google Scholar 

  40. Speeckaert R, Dugardin J, Lambert J, Lapeere H, Verhaeghe E, Speeckaert MM, van Geel N. Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2018;32(7):1089–98. https://doi.org/10.1111/jdv.14792.

    Article  CAS  PubMed  Google Scholar 

  41. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25(6):676–82. https://doi.org/10.1016/j.coi.2013.10.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Dell’Anna ML, Urbanelli S, Mastrofrancesco A, Camera E, Iacovelli P, Leone G, Manini P, D’Ischia M, Picardo M. Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res. 2003;16(5):553–9. https://doi.org/10.1034/j.1600-0749.2003.00087.x.

    Article  CAS  PubMed  Google Scholar 

  43. Kang P, Zhang W, Chen X, Yi X, Song P, Chang Y, Zhang S, Gao T, Li C, Li S. TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radic Biol Med. 2018;126:259–68. https://doi.org/10.1016/j.freeradbiomed.2018.08.022.

    Article  CAS  PubMed  Google Scholar 

  44. Dell’Anna ML, Ottaviani M, Bellei B, Albanesi V, Cossarizza A, Rossi L, Picardo M. Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients. J Cell Physiol. 2010;223(1):187–93. https://doi.org/10.1002/jcp.22027.

    Article  CAS  PubMed  Google Scholar 

  45. Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Investig Dermatol. 2014;134(6):1512–8. https://doi.org/10.1038/jid.2014.65.

    Article  CAS  PubMed  Google Scholar 

  46. Zhong J, Rao X, Xu JF, Yang P, Wang CY. The role of endoplasmic reticulum stress in autoimmune-mediated beta-cell destruction in type 1 diabetes. Exp Diabetes Res. 2012;2012: 238980. https://doi.org/10.1155/2012/238980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bergqvist C, Ezzedine K. Vitiligo: a focus on pathogenesis and its therapeutic implications. J Dermatol. 2021;48(3):252–70. https://doi.org/10.1111/1346-8138.15743.

    Article  CAS  PubMed  Google Scholar 

  48. Meyskens FL Jr, Farmer P, Fruehauf JP. Redox regulation in human melanocytes and melanoma. Pigment Cell Res. 2001;14(3):148–54. https://doi.org/10.1034/j.1600-0749.2001.140303.x.

    Article  CAS  PubMed  Google Scholar 

  49. Puri N, Mojamdar M, Ramaiah A. In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J Investig Dermatol. 1987;88(4):434–8. https://doi.org/10.1111/1523-1747.ep12469795.

    Article  CAS  PubMed  Google Scholar 

  50. Puri N, Mojamdar M, Ramaiah A. Growth defects of melanocytes in culture from vitiligo subjects are spontaneously corrected in vivo in repigmenting subjects and can be partially corrected by the addition of fibroblast-derived growth factors in vitro. Arch Dermatol Res. 1989;281(3):178–84. https://doi.org/10.1007/BF00456389.

    Article  CAS  PubMed  Google Scholar 

  51. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998;188(6):1203–8. https://doi.org/10.1084/jem.188.6.1203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Investig. 2003;83(5):683–95. https://doi.org/10.1097/01.lab.0000069521.42488.1b.

    Article  PubMed  Google Scholar 

  53. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Investig Dermatol. 2009;129(9):2220–32. https://doi.org/10.1038/jid.2009.32.

    Article  CAS  PubMed  Google Scholar 

  54. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Investig Dermatol. 2012;132(7):1869–76. https://doi.org/10.1038/jid.2011.463.

    Article  CAS  PubMed  Google Scholar 

  55. Bertolotti A, Boniface K, Vergier B, Mossalayi D, Taieb A, Ezzedine K, Seneschal J. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014;27(3):398–407. https://doi.org/10.1111/pcmr.12219.

    Article  CAS  PubMed  Google Scholar 

  56. Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, Li M. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 2015;95(6):664–70. https://doi.org/10.2340/00015555-2080.

    Article  CAS  PubMed  Google Scholar 

  57. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223): 223ra23. https://doi.org/10.1126/scitranslmed.3007811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Rashighi M, Harris JE. Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo. Ann Transl Med. 2015;3(21):343. https://doi.org/10.3978/j.issn.2305-5839.2015.11.36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wang XX, Wang QQ, Wu JQ, Jiang M, Chen L, Zhang CF, Xiang LH. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016;174(6):1318–26. https://doi.org/10.1111/bjd.14416.

    Article  CAS  PubMed  Google Scholar 

  60. Abdallah M, El-Mofty M, Anbar T, Rasheed H, Esmat S, Al-Tawdy A, Fawzy MM, Abdel-Halim D, Hegazy R, Gawdat H, Bassiouny D, Ibrahim MA, Sany I, El-Bassiouny M, Khalil M, Abdel-Aziz A, El Maadawi ZM, Mostafa WZ, Egyptian Vitiligo Group. CXCL-10 and Interleukin-6 are reliable serum markers for vitiligo activity: a multicenter cross-sectional study. Pigment Cell Melanoma Res. 2018;31(2):330–6. https://doi.org/10.1111/pcmr.12667.

    Article  CAS  PubMed  Google Scholar 

  61. Riding RL, Harris JE. The role of memory CD8+ T cells in vitiligo. J Immunol. 2019;203(1):11–9. https://doi.org/10.4049/jimmunol.1900027.

    Article  CAS  PubMed  Google Scholar 

  62. Tokura Y, Phadungsaksawasdi P, Kurihara K, Fujiyama T, Honda T. Pathophysiology of skin resident memory T cells. Front Immunol. 2021;11: 618897. https://doi.org/10.3389/fimmu.2020.618897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C, Boukhedouni N, Vernisse C, Grasseau A, Thiolat D, Rambert J, Lucchese F, Bertolotti A, Ezzedine K, Taieb A, Seneschal J. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J Investig Dermatol. 2018;138(2):355–64. https://doi.org/10.1016/j.jid.2017.08.038.

    Article  CAS  PubMed  Google Scholar 

  64. Cheuk S, Schlums H, GallaisSérézal I, Martini E, Chiang SC, Marquardt N, Gibbs A, Detlofsson E, Introini A, Forkel M, Höög C, Tjernlund A, Michaëlsson J, Folkersen L, Mjösberg J, Blomqvist L, Ehrström M, Ståhle M, Bryceson YT, Eidsmo L. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity. 2017;46(2):287–300. https://doi.org/10.1016/j.immuni.2017.01.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Atwa MA, Ali SMM, Youssef N, Mahmoud Marie RE. Elevated serum level of interleukin-15 in vitiligo patients and its correlation with disease severity but not activity. J Cosmet Dermatol. 2021;20(8):2640–4. https://doi.org/10.1111/jocd.13908.

    Article  PubMed  Google Scholar 

  66. Frączek A, Owczarczyk-Saczonek A, Placek W. The role of TRM cells in the pathogenesis of vitiligo—a review of the current state-of-the-art. Int J Mol Sci. 2020;21(10):3552. https://doi.org/10.3390/ijms21103552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Richmond JM, Strassner JP, Zapata L Jr, Garg M, Riding RL, Refat MA, Fan X, Azzolino V, Tovar-Garza A, Tsurushita N, Pandya AG, Tso JY, Harris JE. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Transl Med. 2018;10(450): eaam7710. https://doi.org/10.1126/scitranslmed.aam7710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Azzolino V, Zapata L Jr, Garg M, Gjoni M, Riding RL, Strassner JP, Richmond JM, Harris JE. Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells. J Investig Dermatol. 2021;141(1):182-184.e1. https://doi.org/10.1016/j.jid.2020.04.027.

    Article  CAS  PubMed  Google Scholar 

  69. Yamada T, Hasegawa S, Inoue Y, Date Y, Yamamoto N, Mizutani H, Nakata S, Matsunaga K, Akamatsu H. Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Investig Dermatol. 2013;133(12):2753–62. https://doi.org/10.1038/jid.2013.235.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the role of Wnt/β-catenin pathway through integrated analyses and in vivo experiments in vitiligo. Clin Cosmet Investig Dermatol. 2021;14:1089–103. https://doi.org/10.2147/CCID.S319061.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P, Mounier C, Rival Y, Piwnica D, Cavalié M, Chignon-Sicard B, Ballotti R, Voegel J, Passeron T. Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients. J Investig Dermatol. 2015;135(12):3105–14.

    Article  CAS  PubMed  Google Scholar 

  72. Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, Ezzedine K, Lepreux S, Steingrimsson E, Taieb A, Gauthier Y, Larue L, Delmas V. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Investig Dermatol. 2015;135(7):1810–9. https://doi.org/10.1038/jid.2015.25.

    Article  CAS  PubMed  Google Scholar 

  73. Han X, Chang L, Qiu Z, Lin M, Wang Y, Liu D, Diao Q, Zhong JL, Xu W. Micro-injury induces hair regeneration and vitiligo repigmentation through Wnt/β-catenin pathway. Stem Cells Dev. 2022;31(5–6):111–8. https://doi.org/10.1089/scd.2021.0276.

    Article  CAS  PubMed  Google Scholar 

  74. Tedeschi A, Dall’Oglio F, Micali G, Schwartz RA, Janniger CK. Corrective camouflage in pediatric dermatology. Cutis. 2007;79(2):110–2.

    PubMed  Google Scholar 

  75. Ongenae K, Dierckxsens L, Brochez L, van Geel N, Naeyaert JM. Quality of life and stigmatization profile in a cohort of vitiligo patients and effect of the use of camouflage. Dermatology. 2005;210(4):279–85. https://doi.org/10.1159/000084751.

    Article  CAS  PubMed  Google Scholar 

  76. Tanioka M, Yamamoto Y, Kato M, Miyachi Y. Camouflage for patients with vitiligo vulgaris improved their quality of life. J Cosmet Dermatol. 2010;9(1):72–5. https://doi.org/10.1111/j.1473-2165.2010.00479.x.

    Article  PubMed  Google Scholar 

  77. Bassiouny D, Hegazy R, Esmat S, Gawdat HI, Ahmed Ezzat M, Tawfik HA, Hegazy AA, Ibrahim S. Cosmetic camouflage as an adjuvant to vitiligo therapies: effect on quality of life. J Cosmet Dermatol. 2021;20(1):159–65. https://doi.org/10.1111/jocd.13459.

    Article  PubMed  Google Scholar 

  78. Morales-Sánchez MA, Laguna-Meraz JP, Peralta-Pedrero ML, Jurado-Santa CF. Effect of cosmetic camouflage in adults with vitiligo. Actas Dermosifiliogr. 2022;113(3):316–8. https://doi.org/10.1016/j.ad.2020.04.018(English, Spanish).

    Article  PubMed  Google Scholar 

  79. Li M, Wang F, Ding X, Xu Q, Du J. Evaluation of the potential interference of camouflage on the treatment of vitiligo: an observer-blinded self-controlled study. Dermatol Ther. 2021;34(1): e14545. https://doi.org/10.1111/dth.14545.

    Article  CAS  PubMed  Google Scholar 

  80. Fesq H, Brockow K, Strom K, Mempel M, Ring J, Abeck D. Dihydroxyacetone in a new formulation: a powerful therapeutic option in vitiligo. Dermatology. 2001;203(3):241–3. https://doi.org/10.1159/000051757.

    Article  CAS  PubMed  Google Scholar 

  81. Suga Y, Ikejima A, Matsuba S, Ogawa H. Medical pearl: DHA application for camouflaging segmental vitiligo and piebald lesions. J Am Acad Dermatol. 2002;47(3):436–8. https://doi.org/10.1067/mjd.2002.119670.

    Article  PubMed  Google Scholar 

  82. Rajatanavin N, Suwanachote S, Kulkollakarn S. Dihydroxyacetone: a safe camouflaging option in vitiligo. Int J Dermatol. 2008;47(4):402–6. https://doi.org/10.1111/j.1365-4632.2008.03356.x.

    Article  CAS  PubMed  Google Scholar 

  83. Steuer AB, Zampella JG. Camouflaging vitiligo using a spray tan. Dermatol Online J. 2020;26(7): 13030/qt63j996qx.

    Article  PubMed  Google Scholar 

  84. Hsu S. Camouflaging vitiligo with dihydroxyacetone. Dermatol Online J. 2008;14(8):23.

    Article  PubMed  Google Scholar 

  85. Speeckaert R, van Geel N. Vitiligo: an update on pathophysiology and treatment options. Am J Clin Dermatol. 2017;18(6):733–44. https://doi.org/10.1007/s40257-017-0298-5.

    Article  PubMed  Google Scholar 

  86. Njoo MD, Spuls PI, Bos JD, Westerhof W, Bossuyt PM. Nonsurgical repigmentation therapies in vitiligo Meta-analysis of the literature. Arch Dermatol. 1998;134(12):1532–40. https://doi.org/10.1001/archderm.134.12.1532.

    Article  CAS  PubMed  Google Scholar 

  87. Coondoo A, Phiske M, Verma S, Lahiri K. Side-effects of topical steroids: a long overdue revisit. Indian Dermatol Online J. 2014;5(4):416–25. https://doi.org/10.4103/2229-5178.142483.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Kwinter J, Pelletier J, Khambalia A, Pope E. High-potency steroid use in children with vitiligo: a retrospective study. J Am Acad Dermatol. 2007;56(2):236–41.

    Article  PubMed  Google Scholar 

  89. Arora CJ, Rafiq M, Shumack S, Gupta M. The efficacy and safety of tacrolimus as mono- and adjunctive therapy for vitiligo: a systematic review of randomised clinical trials. Australas J Dermatol. 2020;61(1):e1–9. https://doi.org/10.1111/ajd.13096.

    Article  PubMed  Google Scholar 

  90. Lepe V, Moncada B, Castanedo-Cazares JP, Torres-Alvarez MB, Ortiz CA, Torres-Rubalcava AB. A double-blind randomized trial of 0.1% tacrolimus vs 0.05% clobetasol for the treatment of childhood vitiligo. Arch Dermatol. 2003;139(5):581–5. https://doi.org/10.1001/archderm.139.5.581.

    Article  CAS  PubMed  Google Scholar 

  91. Coskun B, Saral Y, Turgut D. Topical 0.05% clobetasol propionate versus 1% pimecrolimus ointment in vitiligo. Eur J Dermatol. 2005;15(2):88–91.

    PubMed  Google Scholar 

  92. Mumtaz H, Anis S, Akhtar A, Rubab M, Zafar A, Niazi N, Bahadur H, Talpur AS, Shafiq MA, Fatima T. Efficacy of tacrolimus versus clobetasol in the treatment of vitiligo. Cureus. 2020;12(12): e11985. https://doi.org/10.7759/cureus.11985.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Ho N, Pope E, Weinstein M, Greenberg S, Webster C, Krafchik BR. A double-blind, randomized, placebo-controlled trial of topical tacrolimus 0.1% vs. clobetasol propionate 0.05% in childhood vitiligo. Br J Dermatol. 2011;165(3):626–32. https://doi.org/10.1111/j.1365-2133.2011.10351.x.

    Article  CAS  PubMed  Google Scholar 

  94. Chang HC, Hsu YP, Huang YC. The effectiveness of topical calcineurin inhibitors compared with topical corticosteroids in the treatment of vitiligo: a systematic review and meta-analysis. J Am Acad Dermatol. 2020;82(1):243–5. https://doi.org/10.1016/j.jaad.2019.07.108.

    Article  CAS  PubMed  Google Scholar 

  95. Saleh R, Ahmed AA, M Abd-Elmagid W. Efficacy of topical tacrolimus 003% monotherapy in the treatment of non-segmental vitiligo: a randomized, controlled trial. J Cosmet Dermatol. 2021;20(12):3943–52. https://doi.org/10.1111/jocd.14041.

    Article  PubMed  Google Scholar 

  96. Lee JH, Kwon HS, Jung HM, Lee H, Kim GM, Yim HW, Bae JM. Treatment outcomes of topical calcineurin inhibitor therapy for patients with vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2019;155(8):929–38. https://doi.org/10.1001/jamadermatol.2019.0696.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Seneschal J, Duplaine A, Maillard H, Passeron T, Andreu N, Lassalle R, Favary C, Droitcourt C, Taïeb A, Ezzedine K. Efficacy and safety of tacrolimus 0.1% for the treatment of facial vitiligo: a multicenter randomized, double-blinded vehicle-controlled study. J Investig Dermatol. 2021;141(7):1728–34. https://doi.org/10.1016/j.jid.2020.12.028.

    Article  CAS  PubMed  Google Scholar 

  98. Cavalié M, Ezzedine K, Fontas E, Montaudié H, Castela E, Bahadoran P, Taïeb A, Lacour JP, Passeron T. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study. J Investig Dermatol. 2015;135(4):970–4. https://doi.org/10.1038/jid.2014.527.

    Article  CAS  PubMed  Google Scholar 

  99. Shim WH, Suh SW, Jwa SW, Song M, Kim HS, Ko HC, Kim BS, Kim MB. A pilot study of 1% pimecrolimus cream for the treatment of childhood segmental vitiligo. Ann Dermatol. 2013;25(2):168–72. https://doi.org/10.5021/ad.2013.25.2.168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Hu W, Xu Y, Ma Y, Lei J, Lin F, Xu AE. Efficacy of the topical calcineurin inhibitors tacrolimus and pimecrolimus in the treatment of vitiligo in infants under 2 years of age: a randomized open-label pilot study. Clin Drug Investig. 2019;39(12):1233–8. https://doi.org/10.1007/s40261-019-00845-x.

    Article  CAS  PubMed  Google Scholar 

  101. Hu W, Lin F, Lei J, Xu AE. Impacts of exposure to topical calcineurin inhibitors on metabolism in vitiligo infants. Pediatr Res. 2022. https://doi.org/10.1038/s41390-022-02133-5.

    Article  PubMed  Google Scholar 

  102. Ju HJ, Han JH, Kim MS, Lee SH, Shin JW, Choi M, Jeong KH, Han TY, Choi CW, Lee HJ, Oh SH, Lee SH, Kim DH, Shin J, Lee JH, Kim SS, Kang HY, Chang SE, Kim JS, Lee DY, Choi GS, Suh DH, Chan Kim Y, Park CJ, Kim KH, Lee AY, Chan Park K, Lee MH, Bae JM, Korean Society for Vitiligo and the Korean Society for Photomedicine. The long-term risk of lymphoma and skin cancer did not increase after topical calcineurin inhibitor use and phototherapy in a cohort of 25,694 patients with vitiligo. J Am Acad Dermatol. 2021;84(6):1619–27. https://doi.org/10.1016/j.jaad.2021.01.067.

    Article  CAS  PubMed  Google Scholar 

  103. Mosher DB, Parrish JA, Fitzpatrick TB. Monobenzylether of hydroquinone. A retrospective study of treatment of 18 vitiligo patients and a review of the literature. Br J Dermatol. 1977;97(6):669–79. https://doi.org/10.1111/j.1365-2133.1977.tb14275.x.

    Article  CAS  PubMed  Google Scholar 

  104. Njoo MD, Vodegel RM, Westerhof W. Depigmentation therapy in vitiligo universalis with topical 4-methoxyphenol and the Q-switched ruby laser. J Am Acad Dermatol. 2000;42(5 Pt 1):760–9. https://doi.org/10.1067/mjd.2000.103813.

    Article  CAS  PubMed  Google Scholar 

  105. Rordam OM, Lenouvel EW, Maalo M. Successful treatment of extensive vitiligo with monobenzone. J Clin Aesthet Dermatol. 2012;5(12):36–9.

    PubMed Central  PubMed  Google Scholar 

  106. Tan ES, Sarkany R. Topical monobenzyl ether of hydroquinone is an effective and safe treatment for depigmentation of extensive vitiligo in the medium term: a retrospective cohort study of 53 cases. Br J Dermatol. 2015;172(6):1662–4. https://doi.org/10.1111/bjd.13642.

    Article  CAS  PubMed  Google Scholar 

  107. Oakley AM. Rapid repigmentation after depigmentation therapy: vitiligo treated with monobenzyl ether of hydroquinone. Australas J Dermatol. 1996;37(2):96–8. https://doi.org/10.1111/j.1440-0960.1996.tb01014.x.

    Article  CAS  PubMed  Google Scholar 

  108. Nofal A, Fawzy MM, Alakad R. The use of trichloroacetic acid as a depigmenting therapy in universal vitiligo. J Dtsch Dermatol Ges. 2021;19(2):241–6. https://doi.org/10.1111/ddg.14316.

    Article  PubMed  Google Scholar 

  109. Zanini M, Machado Filho CD. Depigmentation therapy for generalized vitiligo with topical 88% phenol solution. An Bras Dermatol. 2005;80(4):415–6.

    Article  Google Scholar 

  110. Mahmood F, Beach RA. Can it make me white again? A case report of 88% phenol as a depigmenting agent in vitiligo. SAGE Open Med Case Rep. 2021;9: 2050313X21993307. https://doi.org/10.1177/2050313X21993307.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Kim YJ, Chung BS, Choi KC. Depigmentation therapy with Q-switched ruby laser after tanning in vitiligo universalis. Dermatol Surg. 2001;27(11):969–70. https://doi.org/10.1046/j.1524-4725.2001.01101.x.

    Article  CAS  PubMed  Google Scholar 

  112. Komen L, Zwertbroek L, Burger SJ, van der Veen JP, de Rie MA, Wolkerstorfer A. Q-switched laser depigmentation in vitiligo, most effective in active disease. Br J Dermatol. 2013;169(6):1246–51. https://doi.org/10.1111/bjd.12571.

    Article  CAS  PubMed  Google Scholar 

  113. Majid I, Imran S. Depigmentation therapy with Q-switched Nd:YAG laser in universal vitiligo. J Cutan Aesthet Surg. 2013;6(2):93–6. https://doi.org/10.4103/0974-2077.112670.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Rao J, Fitzpatrick RE. Use of the Q-switched 755-nm alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo. Dermatol Surg. 2004;30(7):1043–5. https://doi.org/10.1111/j.1524-4725.2004.30313.x.

    Article  PubMed  Google Scholar 

  115. Radmanesh M. Depigmentation of the normally pigmented patches in universal vitiligo patients by cryotherapy. J Eur Acad Dermatol Venereol. 2000;14(3):149–52. https://doi.org/10.1046/j.1468-3083.2000.00038.x.

    Article  CAS  PubMed  Google Scholar 

  116. van Geel N, Depaepe L, Speeckaert R. Laser (755 nm) and cryotherapy as depigmentation treatments for vitiligo: a comparative study. J Eur Acad Dermatol Venereol. 2015;29(6):1121–7. https://doi.org/10.1111/jdv.12762.

    Article  CAS  PubMed  Google Scholar 

  117. Kavuossi H. Induction of depigmentation in a universal vitiligo patient with combination of cryotherapy and phenol. J Pak Assoc Dermatol. 2009;19:112–4.

    Google Scholar 

  118. Di Nuzzo S, Masotti A. Depigmentation therapy in vitiligo universalis with cryotherapy and 4-hydroxyanisole. Clin Exp Dermatol. 2010;35(2):215–6. https://doi.org/10.1111/j.1365-2230.2009.03412.x.

    Article  PubMed  Google Scholar 

  119. AlGhamdi KM, Kumar A. Depigmentation therapies for normal skin in vitiligo universalis. J Eur Acad Dermatol Venereol. 2011;25(7):749–57. https://doi.org/10.1111/j.1468-3083.2010.03876.x.

    Article  CAS  PubMed  Google Scholar 

  120. Kim SM, Lee HS, Hann SK. The efficacy of low-dose oral corticosteroids in the treatment of vitiligo patients. Int J Dermatol. 1999;38(7):546–50. https://doi.org/10.1046/j.1365-4362.1999.00623.x.

    Article  CAS  PubMed  Google Scholar 

  121. Imamura S, Tagami H. Treatment of vitiligo with oral corticosteroids. Dermatologica. 1976;153(3):179–85. https://doi.org/10.1159/000251114.

    Article  CAS  PubMed  Google Scholar 

  122. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther. 2017;39(11):2216–29. https://doi.org/10.1016/j.clinthera.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  123. Pasricha JS, Khaitan BK. Oral mini-pulse therapy with betamethasone in vitiligo patients having extensive or fast-spreading disease. Int J Dermatol. 1993;32(10):753–7. https://doi.org/10.1111/j.1365-4362.1993.tb02754.x.

    Article  CAS  PubMed  Google Scholar 

  124. Radakovic-Fijan S, Fürnsinn-Friedl AM, Hönigsmann H, Tanew A. Oral dexamethasone pulse treatment for vitiligo. J Am Acad Dermatol. 2001;44(5):814–7. https://doi.org/10.1067/mjd.2001.113475.

    Article  CAS  PubMed  Google Scholar 

  125. Banerjee K, Barbhuiya JN, Ghosh AP, Dey SK, Karmakar PR. The efficacy of low-dose oral corticosteroids in the treatment of vitiligo patient. Indian J Dermatol Venereol Leprol. 2003;69(2):135–7.

    CAS  PubMed  Google Scholar 

  126. Kanwar AJ, Mahajan R, Parsad D. Low-dose oral mini-pulse dexamethasone therapy in progressive unstable vitiligo. J Cutan Med Surg. 2013;17(4):259–68. https://doi.org/10.2310/7750.2013.12053.

    Article  CAS  PubMed  Google Scholar 

  127. Chavez-Alvarez S, Herz-Ruelas M, Raygoza-Cortez AK, Suro-Santos Y, Ocampo-Candiani J, Alvarez-Villalobos NA, Villarreal-Martinez A. Oral mini-pulse therapy in vitiligo: a systematic review. Int J Dermatol. 2021;60(7):868–76. https://doi.org/10.1111/ijd.15464.

    Article  PubMed  Google Scholar 

  128. Koh MJ, Mok ZR, Chong WS. Phototherapy for the treatment of vitiligo in Asian children. Pediatr Dermatol. 2015;32(2):192–7. https://doi.org/10.1111/pde.12506.

    Article  PubMed  Google Scholar 

  129. Seccombe E, Wynne MD, Clancy C, Godfrey KM, Fityan A. A retrospective review of phototherapy in children, at a tertiary paediatric dermatology unit. Photodermatol Photoimmunol Photomed. 2021;37(1):34–8. https://doi.org/10.1111/phpp.12604.

    Article  PubMed  Google Scholar 

  130. Lopes C, Trevisani VF, Melnik T. Efficacy and safety of 308-nm monochromatic excimer lamp versus other phototherapy devices for vitiligo: a systematic review with meta-analysis. Am J Clin Dermatol. 2016;17(1):23–32. https://doi.org/10.1007/s40257-015-0164-2.

    Article  PubMed  Google Scholar 

  131. Bae JM, Jung HM, Hong BY, Lee JH, Choi WJ, Lee JH, Kim GM. Phototherapy for vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2017;153(7):666–74. https://doi.org/10.1001/jamadermatol.2017.0002.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Brazzelli V, Antoninetti M, Palazzini S, Barbagallo T, De Silvestri A, Borroni G. Critical evaluation of the variants influencing the clinical response of vitiligo: study of 60 cases treated with ultraviolet B narrow-band phototherapy. J Eur Acad Dermatol Venereol. 2007;21(10):1369–74. https://doi.org/10.1111/j.1468-3083.2007.02278.x.

    Article  CAS  PubMed  Google Scholar 

  133. Anbar TS, Westerhof W, Abdel-Rahman AT, El-Khayyat MA. Evaluation of the effects of NB-UVB in both segmental and non-segmental vitiligo affecting different body sites. Photodermatol Photoimmunol Photomed. 2006;22(3):157–63. https://doi.org/10.1111/j.1600-0781.2006.00222.x.

    Article  CAS  PubMed  Google Scholar 

  134. Abdulla SJ, Desgroseilliers JP. Treatment of vitiligo with narrow-band ultraviolet B: advantages and disadvantages. J Cutan Med Surg. 2008;12(4):174–9. https://doi.org/10.2310/7750.2008.07054.

    Article  PubMed  Google Scholar 

  135. Khojah HMJ, Alharbi AG, Alshaeri AA, Alahmadi YM, Elbadawy HM. Impact of narrow-band ultraviolet B radiation therapy on the quality of life of patients with vitiligo. J Taibah Univ Med Sci. 2021;16(6):843–8. https://doi.org/10.1016/j.jtumed.2021.04.012.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Agarwal K, Podder I, Kassir M, Vojvodic A, Schwartz RA, Wollina U, Valle Y, Lotti T, Rokni GR, Grabbe S, Goldust M. Therapeutic options in vitiligo with special emphasis on immunomodulators: a comprehensive update with review of literature. Dermatol Ther. 2020;33(2): e13215. https://doi.org/10.1111/dth.13215.

    Article  PubMed  Google Scholar 

  137. Ashraf AZ, Azurdia RM, Cohen SN. The effectiveness of home-based phototherapy for vitiligo: a systematic review of randomised controlled trials. Photodermatol Photoimmunol Photomed. 2021. https://doi.org/10.1111/phpp.12766.

    Article  Google Scholar 

  138. Sonthalia S. Topical Band-pass Filter Cream (TBFC)-assisted home-based NB-UVB: a must-know Alternative to artificial phototherapy. J Cosmet Dermatol. 2021;20(7):2141–7. https://doi.org/10.1111/jocd.14215.

    Article  PubMed  Google Scholar 

  139. Leone G, Iacovelli P, Paro Vidolin A, Picardo M. Monochromatic excimer light 308 nm in the treatment of vitiligo: a pilot study. J Eur Acad Dermatol Venereol. 2003;17(5):531–7. https://doi.org/10.1046/j.1468-3083.2003.00818.x.

    Article  CAS  PubMed  Google Scholar 

  140. Cheng YP, Chiu HY, Jee SH, Tsai TF. Excimer light photototherapy of segmental and non-segmental vitiligo: experience in Taiwan. Photodermatol Photoimmunol Photomed. 2012;28(1):6–11. https://doi.org/10.1111/j.1600-0781.2011.00628.x.

    Article  PubMed  Google Scholar 

  141. Abdel Latif AA, Ibrahim SM. Monochromatic excimer light versus combination of topical steroid with vitamin D3 analogue in the treatment of nonsegmental vitiligo: a randomized blinded comparative study. Dermatol Ther. 2015;28(6):383–9. https://doi.org/10.1111/dth.12289.

    Article  PubMed  Google Scholar 

  142. Sun Y, Wu Y, Xiao B, Li L, Li L, Chen HD, Gao XH. Treatment of 308-nm excimer laser on vitiligo: a systemic review of randomized controlled trials. J Dermatolog Treat. 2015;26(4):347–53. https://doi.org/10.3109/09546634.2014.991268.

    Article  PubMed  Google Scholar 

  143. Tran AK, Vaidya S. Treatment of refractory vitiligo with the 308-nm excimer lamp—an Australian prospective analysis of clinical efficacy and safety. Australas J Dermatol. 2020;61(3):289–91. https://doi.org/10.1111/ajd.13259.

    Article  PubMed  Google Scholar 

  144. Spencer JM, Nossa R, Ajmeri J. Treatment of vitiligo with the 308-nm excimer laser: a pilot study. J Am Acad Dermatol. 2002;46(5):727–31. https://doi.org/10.1067/mjd.2002.121357.

    Article  PubMed  Google Scholar 

  145. Taneja A, Trehan M, Taylor CR. 308-nm excimer laser for the treatment of localized vitiligo. Int J Dermatol. 2003;42(8):658–62. https://doi.org/10.1046/j.1365-4362.2003.01997.x.

    Article  PubMed  Google Scholar 

  146. Choi KH, Park JH, Ro YS. Treatment of Vitiligo with 308-nm xenon-chloride excimer laser: therapeutic efficacy of different initial doses according to treatment areas. J Dermatol. 2004;31(4):284–92. https://doi.org/10.1111/j.1346-8138.2004.tb00674.x.

    Article  PubMed  Google Scholar 

  147. Esposito M, Soda R, Costanzo A, Chimenti S. Treatment of vitiligo with the 308 nm excimer laser. Clin Exp Dermatol. 2004;29(2):133–7. https://doi.org/10.1111/j.1365-2230.2004.01477.x.

    Article  CAS  PubMed  Google Scholar 

  148. Hadi SM, Spencer JM, Lebwohl M. The use of the 308-nm excimer laser for the treatment of vitiligo. Dermatol Surg. 2004;30(7):983–6. https://doi.org/10.1111/j.1524-4725.2004.30302.x.

    Article  PubMed  Google Scholar 

  149. Hadi S, Tinio P, Al-Ghaithi K, Al-Qari H, Al-Helalat M, Lebwohl M, Spencer J. Treatment of vitiligo using the 308-nm excimer laser. Photomed Laser Surg. 2006;24(3):354–7. https://doi.org/10.1089/pho.2006.24.354.

    Article  PubMed  Google Scholar 

  150. Hofer A, Hassan AS, Legat FJ, Kerl H, Wolf P. The efficacy of excimer laser (308 nm) for vitiligo at different body sites. J Eur Acad Dermatol Venereol. 2006;20(5):558–64. https://doi.org/10.1111/j.1468-3083.2006.01547.x.

    Article  CAS  PubMed  Google Scholar 

  151. Chimento SM, Newland M, Ricotti C, Nistico S, Romanelli P. A pilot study to determine the safety and efficacy of monochromatic excimer light in the treatment of vitiligo. J Drugs Dermatol. 2008;7(3):258–63.

    PubMed  Google Scholar 

  152. Cho S, Zheng Z, Park YK, Roh MR. The 308-nm excimer laser: a promising device for the treatment of childhood vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(1):24–9. https://doi.org/10.1111/j.1600-0781.2010.00558.x.

    Article  PubMed  Google Scholar 

  153. Greve B, Raulin C, Fischer E. Excimer-Laser bei Vitiligo—Kritische Wertung eigener retrospektiver Behandlungsergebnisse und Literaturübersicht [Excimer laser treatment of vitiligo—critical retrospective assessment of own results and literature overview]. J Dtsch Dermatol Ges. 2006;4(1):32–40. https://doi.org/10.1111/j.1610-0387.2006.05879.x(German).

    Article  PubMed  Google Scholar 

  154. Al-Otaibi SR, Zadeh VB, Al-Abdulrazzaq AH, Tarrab SM, Al-Owaidi HA, Mahrous R, Kadyan RS, Najem NM. Using a 308-nm excimer laser to treat vitiligo in Asians. Acta Dermatovenerol Alp Pannonica Adriat. 2009;18(1):13–9.

    PubMed  Google Scholar 

  155. Zhang XY, He YL, Dong J, Xu JZ, Wang J. Clinical efficacy of a 308 nm excimer laser in the treatment of vitiligo. Photodermatol Photoimmunol Photomed. 2010;26(3):138–42. https://doi.org/10.1111/j.1600-0781.2010.00509.x.

    Article  PubMed  Google Scholar 

  156. Noborio R, Nakamura M, Yoshida M, Nakamura R, Oshima R, Kubo R, Kato H, Morita A. Monotherapy for vitiligo using a 308-nm xenon-chloride excimer laser: colorimetric assessment of factors that influence treatment efficacy. J Dermatol. 2012;39(12):1102–3. https://doi.org/10.1111/j.1346-8138.2012.01633.x.

    Article  PubMed  Google Scholar 

  157. Fa Y, Lin Y, Chi XJ, Shi WH, Wang JL, Guo X, Geng JH, Liu HX, Zhang FR. Treatment of vitiligo with 308-nm excimer laser: our experience from a 2-year follow-up of 979 Chinese patients. J Eur Acad Dermatol Venereol. 2017;31(2):337–40. https://doi.org/10.1111/jdv.13917.

    Article  CAS  PubMed  Google Scholar 

  158. Do JE, Shin JY, Kim DY, Hann SK, Oh SH. The effect of 308 nm excimer laser on segmental vitiligo: a retrospective study of 80 patients with segmental vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(3):147–51. https://doi.org/10.1111/j.1600-0781.2011.00587.x.

    Article  PubMed  Google Scholar 

  159. Majid I, Imran S. Excimer light therapy in childhood segmental vitiligo: early treatment gives better results. Dermatol Ther. 2020;33(3): e13408. https://doi.org/10.1111/dth.13408.

    Article  PubMed  Google Scholar 

  160. Sethi S, Silverberg N. Short and long-term outcomes of 308-nm laser for pediatric vitiligo. J Drugs Dermatol. 2022;21(7):773–5. https://doi.org/10.36849/JDD.6895.

    Article  PubMed  Google Scholar 

  161. Tabassum H, Majid I, Imran S. Is targeted UVB as effective as excimer light phototherapy in treatment of vitiligo? Dermatol Ther. 2021;34(5): e15058. https://doi.org/10.1111/dth.15058.

    Article  PubMed  Google Scholar 

  162. Poolsuwan P, Churee C, Pattamadilok B. Comparative efficacy between localized 308-nm excimer light and targeted 311-nm narrowband ultraviolet B phototherapy in vitiligo: a randomized, single-blind comparison study. Photodermatol Photoimmunol Photomed. 2021;37(2):123–30. https://doi.org/10.1111/phpp.12619.

    Article  CAS  PubMed  Google Scholar 

  163. Yadav D, Khandpur S, Bhari N. Targeted phototherapy with excimer light is not efficacious in the management of residual vitiligo patches following whole-body narrowband ultraviolet B light therapy: results of a retrospective case series. Indian J Dermatol Venereol Leprol. 2022;88(2):249–51. https://doi.org/10.25259/IJDVL_8_2020.

    Article  PubMed  Google Scholar 

  164. Hofer A, Hassan AS, Legat FJ, Kerl H, Wolf P. Optimal weekly frequency of 308-nm excimer laser treatment in vitiligo patients. Br J Dermatol. 2005;152(5):981–5. https://doi.org/10.1111/j.1365-2133.2004.06321.x.

    Article  CAS  PubMed  Google Scholar 

  165. Shen Z, Gao TW, Chen L, Yang L, Wang YC, Sun LC, Li CY, Xiao Y, Liu YF. Optimal frequency of treatment with the 308-nm excimer laser for vitiligo on the face and neck. Photomed Laser Surg. 2007;25(5):418–27. https://doi.org/10.1089/pho.2007.2086.

    Article  CAS  PubMed  Google Scholar 

  166. Ayob S, Cockayne SE, Gawkrodger DJ. Once weekly targeted excimer light produced modest repigmentation of vitiligo over a 20-week period. J Eur Acad Dermatol Venereol. 2018;32(8):e307–8. https://doi.org/10.1111/jdv.14853.

    Article  CAS  PubMed  Google Scholar 

  167. Xiang L. Once-weekly treatment of vitiligo with monochromatic excimer light 308 nm in Chinese patients. J Eur Acad Dermatol Venereol. 2008;22(7):899–900. https://doi.org/10.1111/j.1468-3083.2007.02518.x.

    Article  CAS  PubMed  Google Scholar 

  168. Al-Shobaili HA. Correlation of clinical efficacy and psychosocial impact on vitiligo patients by excimer laser treatment. Ann Saudi Med. 2014;34(2):115–21. https://doi.org/10.5144/0256-4947.2014.115.

    Article  PubMed Central  PubMed  Google Scholar 

  169. Al-Shobaili HA. Treatment of vitiligo patients by excimer laser improves patients’ quality of life. J Cutan Med Surg. 2015;19(1):50–6. https://doi.org/10.2310/7750.2014.14002.

    Article  PubMed  Google Scholar 

  170. Bae JM, Eun SH, Oh SH, Shin JH, Kang HY, Kim KH, Lee SC, Choi CW. The 308-nm excimer laser treatment does not increase the risk of skin cancer in patients with vitiligo: a population-based retrospective cohort study. Pigment Cell Melanoma Res. 2019;32(5):714–8. https://doi.org/10.1111/pcmr.12781.

    Article  CAS  PubMed  Google Scholar 

  171. Sung JM, Bae JM, Kang HY. Comparison of cyclic and continuous 308-nm excimer laser treatments for vitiligo: a randomized controlled noninferiority trial. J Am Acad Dermatol. 2018;78(3):605-607.e1. https://doi.org/10.1016/j.jaad.2017.09.048.

    Article  PubMed  Google Scholar 

  172. Shenoi SD, Prabhu S, Indian Association of Dermatologists, Venereologists and Leprologists. Photochemotherapy (PUVA) in psoriasis and vitiligo. Indian J Dermatol Venereol Leprol. 2014;80(6):497–504. https://doi.org/10.4103/0378-6323.144143.

    Article  PubMed  Google Scholar 

  173. Wildfang IL, Jacobsen FK, Thestrup-Pedersen K. PUVA treatment of vitiligo: a retrospective study of 59 patients. Acta Derm Venereol. 1992;72(4):305–6.

    CAS  PubMed  Google Scholar 

  174. Chuan MT, Tsai YJ, Wu MC. Effectiveness of psoralen photochemotherapy for vitiligo. J Formos Med Assoc. 1999;98(5):335–40.

    CAS  PubMed  Google Scholar 

  175. Sahin S, Hindioğlu U, Karaduman A. PUVA treatment of vitiligo: a retrospective study of Turkish patients. Int J Dermatol. 1999;38(7):542–5. https://doi.org/10.1046/j.1365-4362.1999.00654.x.

    Article  CAS  PubMed  Google Scholar 

  176. Tallab T, Joharji H, Bahamdan K, Karkashan E, Mourad M, Ibrahim K. Response of vitiligo to PUVA therapy in Saudi patients. Int J Dermatol. 2005;44(7):556–8. https://doi.org/10.1111/j.1365-4632.2004.02014.x.

    Article  CAS  PubMed  Google Scholar 

  177. Anbar TS, El-Sawy AE, Attia SK, Barakat MT, Moftah NH, El-Ammawy TS, Abdel-Rahman AT, El-Tonsy MH. Effect of PUVA therapy on melanocytes and keratinocytes in non-segmental vitiligo: histopathological, immuno-histochemical and ultrastructural study. Photodermatol Photoimmunol Photomed. 2012;28(1):17–25. https://doi.org/10.1111/j.1600-0781.2011.00631.x.

    Article  PubMed  Google Scholar 

  178. Wu CS, Lan CC, Wang LF, Chen GS, Wu CS, Yu HS. Effects of psoralen plus ultraviolet A irradiation on cultured epidermal cells in vitro and patients with vitiligo in vivo. Br J Dermatol. 2007;156(1):122–9. https://doi.org/10.1111/j.1365-2133.2006.07584.x.

    Article  CAS  PubMed  Google Scholar 

  179. Kwok YK, Anstey AV, Hawk JL. Psoralen photochemotherapy (PUVA) is only moderately effective in widespread vitiligo: a 10-year retrospective study. Clin Exp Dermatol. 2002;27(2):104–10. https://doi.org/10.1046/j.1365-2230.2002.00984.x.

    Article  CAS  PubMed  Google Scholar 

  180. Yones SS, Palmer RA, Garibaldinos TM, Hawk JL. Randomized double-blind trial of treatment of vitiligo: efficacy of psoralen-UV-A therapy vs Narrowband-UV-B therapy. Arch Dermatol. 2007;143(5):578–84. https://doi.org/10.1001/archderm.143.5.578.

    Article  CAS  PubMed  Google Scholar 

  181. El-Mofty M, Mostafa WZ, Bosseila M, Youssef R, Esmat S, El Ramly A, Fawzi M, Mahgoub D, Nagui N, Mashaly HM, El-Fangary M, Fathy M. A large scale analytical study on efficacy of different photo(chemo)therapeutic modalities in the treatment of psoriasis, vitiligo and mycosis fungoides. Dermatol Ther. 2010;23(4):428–34. https://doi.org/10.1111/j.1529-8019.2010.01345.x.

    Article  CAS  PubMed  Google Scholar 

  182. Bhatnagar A, Kanwar AJ, Parsad D, De D. Psoralen and ultraviolet A and narrow-band ultraviolet B in inducing stability in vitiligo, assessed by vitiligo disease activity score: an open prospective comparative study. J Eur Acad Dermatol Venereol. 2007;21(10):1381–5. https://doi.org/10.1111/j.1468-3083.2007.02283.x.

    Article  CAS  PubMed  Google Scholar 

  183. Sakhiya J, Sakhiya D, Virmani N, Gajjar T, Kaklotar J, Khambhati R, Daruwala F, Dudhatra N. A retrospective study of 3,000 Indian patients with vitiligo treated with phototherapy or topical monotherapy. J Clin Aesthet Dermatol. 2021;14(2):46–9.

    PubMed Central  PubMed  Google Scholar 

  184. Liu YY, Zhou JF, Zhen Y, Cui Y, Song Y, Yao L, Li SS. Clinical efficacy analysis of 110 cases of childhood vitiligo with non-surgical combined therapy. J Dermatolog Treat. 2022. https://doi.org/10.1080/09546634.2022.2104443.

    Article  PubMed  Google Scholar 

  185. Roy P, Saha SK, Paul PC, Reza AK, Nandi AK, Sultana S, Saha S, Akhter SM, Khatun S, Habibunnahar M. Effectiveness of topical corticosteroid, topical calcineurin inhibitors and combination of them in the treatment of vitiligo. Mymensingh Med J. 2016;25(4):620–7.

    CAS  PubMed  Google Scholar 

  186. Dang YP, Li Q, Shi F, Yuan XY, Liu W. Effect of topical calcineurin inhibitors as monotherapy or combined with phototherapy for vitiligo treatment: a meta-analysis. Dermatol Ther. 2016;29(2):126–33. https://doi.org/10.1111/dth.12295.

    Article  PubMed  Google Scholar 

  187. Chang HC, Sung CW. Efficacy of combination therapy of narrowband-ultraviolet B phototherapy or excimer laser with topical tacrolimus for vitiligo: an updated systematic review and meta-analysis. Photodermatol Photoimmunol Photomed. 2021;37(1):74–7. https://doi.org/10.1111/phpp.12593.

    Article  CAS  PubMed  Google Scholar 

  188. Li R, Qiao M, Wang X, Zhao X, Sun Q. Effect of narrow band ultraviolet B phototherapy as monotherapy or combination therapy for vitiligo: a meta-analysis. Photodermatol Photoimmunol Photomed. 2017;33(1):22–31. https://doi.org/10.1111/phpp.12277.

    Article  CAS  PubMed  Google Scholar 

  189. Nordal EJ, Guleng GE, Rönnevig JR. Treatment of vitiligo with narrowband-UVB (TL01) combined with tacrolimus ointment (0.1%) vs. placebo ointment, a randomized right/left double-blind comparative study. J Eur Acad Dermatol Venereol. 2011;25(12):1440–3. https://doi.org/10.1111/j.1468-3083.2011.04002.x.

    Article  CAS  PubMed  Google Scholar 

  190. Bae JM, Hong BY, Lee JH, Lee JH, Kim GM. The efficacy of 308-nm excimer laser/light (EL) and topical agent combination therapy versus EL monotherapy for vitiligo: a systematic review and meta-analysis of randomized controlled trials (RCTs). J Am Acad Dermatol. 2016;74(5):907–15. https://doi.org/10.1016/j.jaad.2015.11.044.

    Article  CAS  PubMed  Google Scholar 

  191. Iraji F, Asilian A, Talebzadeh Z, Saber M, Mokhtari F, Siadat A, Hosseini SM. Microneedling in combination with topical pimecrolimus 1% versus topical pimecrolimus 1% for the treatment of refractory stable vitiligo: a randomized clinical trial. Dermatol Res Pract. 2021;2021:5652140. https://doi.org/10.1155/2021/5652140.

    Article  PubMed Central  PubMed  Google Scholar 

  192. Hu M, Liao K, Lei W, Zhang R, Tu C. The addition of topical calcipotriol to phototherapy enhance the efficacy of treatment in patients with vitiligo: a systematic review and meta-analysis. Int Immunopharmacol. 2021;98: 107910. https://doi.org/10.1016/j.intimp.2021.107910.

    Article  CAS  PubMed  Google Scholar 

  193. Liu X, Yao Z, Wang Y, Chai L, Zhou X. Vitamin D analogs combined with different types of phototherapy in the treatment of vitiligo: a systematic review of randomized trials and within-patient studies. Int Immunopharmacol. 2022;109: 108789. https://doi.org/10.1016/j.intimp.2022.108789.

    Article  CAS  PubMed  Google Scholar 

  194. Juntongjin P, Sangganjanavanich P. Efficacy of the combined excimer light and topical calcipotriol for acral vitiligo: a randomized double-blind comparative study. Dermatol Ther. 2021;34(2): e14886. https://doi.org/10.1111/dth.14886.

    Article  CAS  PubMed  Google Scholar 

  195. Batchelor JM, Thomas KS, Akram P, Azad J, Bewley A, Chalmers JR, Cheung ST, Duley L, Eleftheriadou V, Ellis R, Ferguson A, Goulding JM, Haines RH, Hamad H, Ingram JR, Laguda B, Leighton P, Levell N, Makrygeorgou A, Meakin GD, Millington A, Ogboli M, Rajasekaran A, Ravenscroft JC, Rogers A, Sach TH, Santer M, Stainforth J, Tan W, Wahie S, White J, Whitton ME, Williams HC, Wright A, Montgomery AA. Home-based narrowband UVB, topical corticosteroid or combination for children and adults with vitiligo: HI-Light Vitiligo three-arm RCT. Health Technol Assess. 2020;24(64):1–128. https://doi.org/10.3310/hta24640.

    Article  PubMed Central  PubMed  Google Scholar 

  196. El Mofty M, Essmat S, Youssef R, Sobeih S, Mahgoub D, Ossama S, Saad A, El Tawdy A, Mashaly HM, Saney I, Helal R, Shaker O. The role of systemic steroids and phototherapy in the treatment of stable vitiligo: a randomized controlled trial. Dermatol Ther. 2016;29(6):406–12. https://doi.org/10.1111/dth.12384.

    Article  PubMed  Google Scholar 

  197. Esmat SM, El-Mofty M, Rasheed H, Mostafa WZ, Anbar TS, Abdallah M, Bassiouny D, Abdel-Halim D, Hegazy R, Eid AA, Nassar A, Abdel-Aziz RT, Fawzy MM, Gawdat HI, El Hawary M, Sany I, Shalaby S, Ragab N, Abdel-Gaber RM, Tawfik YM, El-Bassiouny M, El-Husseiny R, Attia MS, Farid C, Genedy RM, Mogawer RM. Efficacy of narrow band UVB with or without OMP in stabilization of vitiligo activity in skin photo-types (III-V): a double-blind, randomized, placebo-controlled, prospective, multicenter study. Photodermatol Photoimmunol Photomed. 2022;38(3):277–87. https://doi.org/10.1111/phpp.12749.

    Article  CAS  PubMed  Google Scholar 

  198. Tovar-Garza A, Hinojosa JA, Hynan LS, Pandya AG. Addition of oral minipulse dexamethasone to narrowband ultraviolet B phototherapy and topical steroids helps arrest disease activity in patients with vitiligo. Br J Dermatol. 2019;180(1):193–4. https://doi.org/10.1111/bjd.17150(Erratum in: Br J Dermatol. 2020;182(5):1318).

    Article  CAS  PubMed  Google Scholar 

  199. Lee J, Chu H, Lee H, Kim M, Kim DS, Oh SH. A Retrospective study of methylprednisolone mini-pulse therapy combined with narrow-band UVB in non-segmental vitiligo. Dermatology. 2016;232(2):224–9. https://doi.org/10.1159/000439563.

    Article  CAS  PubMed  Google Scholar 

  200. Mulekar SV, Isedeh P. Surgical interventions for vitiligo: an evidence-based review. Br J Dermatol. 2013;169(Suppl 3):57–66. https://doi.org/10.1111/bjd.12532.

    Article  PubMed  Google Scholar 

  201. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE, Vitiligo Working Group. Current and emerging treatments for vitiligo. J Am Acad Dermatol. 2017;77(1):17–29. https://doi.org/10.1016/j.jaad.2016.11.010.

    Article  PubMed  Google Scholar 

  202. Ju HJ, Bae JM, Lee RW, Kim SH, Parsad D, Pourang A, Hamzavi I, Shourick J, Ezzedine K. Surgical interventions for patients with vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2021;157(3):307–16. https://doi.org/10.1001/jamadermatol.2020.5756.

    Article  PubMed  Google Scholar 

  203. Mohammad TF, Hamzavi IH. Surgical therapies for vitiligo. Dermatol Clin. 2017;35(2):193–203. https://doi.org/10.1016/j.det.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  204. Feetham HJ, Chan JL, Pandya AG. Characterization of clinical response in patients with vitiligo undergoing autologous epidermal punch grafting. Dermatol Surg. 2012;38(1):14–9. https://doi.org/10.1111/j.1524-4725.2011.02171.x.

    Article  CAS  PubMed  Google Scholar 

  205. Fongers A, Wolkerstorfer A, Nieuweboer-Krobotova L, Krawczyk P, Tóth GG, van der Veen JP. Long-term results of 2-mm punch grafting in patients with vitiligo vulgaris and segmental vitiligo: effect of disease activity. Br J Dermatol. 2009;161(5):1105–11. https://doi.org/10.1111/j.1365-2133.2009.09367.x.

    Article  CAS  PubMed  Google Scholar 

  206. Bae JM, Lee JH, Kwon HS, Kim J, Kim DS. Motorized 0.8-mm micropunch grafting for refractory vitiligo: a retrospective study of 230 cases. J Am Acad Dermatol. 2018;79(4):720-727.e1. https://doi.org/10.1016/j.jaad.2018.06.016.

    Article  PubMed  Google Scholar 

  207. Kim JC, Kim DC, Kang HY, Kim DS. Treatment outcomes and prognostic factors of motorized 0.5-mm micropunch grafting with a skin-seeding technique for 83 cases of vitiligo in children. J Am Acad Dermatol. 2022. https://doi.org/10.1016/j.jaad.2022.07.021.

    Article  PubMed Central  PubMed  Google Scholar 

  208. Ragab M, El Zagh O, Farid C. Transverse needling after autologous mini-punch grafts improves repigmentation in stable non-segmental vitiligo. Clin Cosmet Investig Dermatol. 2021;14:827–35. https://doi.org/10.2147/CCID.S315407.

    Article  PubMed Central  PubMed  Google Scholar 

  209. McCrary MR, Gibbs DC, Alharthi M, Krueger LD. Utilization of our toolkit: a systematic review and meta-analysis of surgical therapies in vitiligo treatment. Dermatol Surg. 2022;48(8):815–21. https://doi.org/10.1097/DSS.0000000000003503.

    Article  CAS  PubMed  Google Scholar 

  210. Nanda S, Relhan V, Grover C, Reddy BS. Suction blister epidermal grafting for management of eyelid vitiligo: special considerations. Dermatol Surg. 2006;32(3):387–91. https://doi.org/10.1111/j.1524-4725.2006.32078.x.

    Article  CAS  PubMed  Google Scholar 

  211. Gupta S, Goel A, Kanwar AJ, Kumar B. Autologous melanocyte transfer via epidermal grafts for lip vitiligo. Int J Dermatol. 2006;45(6):747–50. https://doi.org/10.1111/j.1365-4632.2006.02694.x.

    Article  PubMed  Google Scholar 

  212. Kar BR, Raj C. Suction blister epidermal grafting for vitiligo involving angles of lip: experience of 112 patients. J Cutan Aesthet Surg. 2018;11(1):13–9. https://doi.org/10.4103/JCAS.JCAS_111_15.

    Article  PubMed Central  PubMed  Google Scholar 

  213. Kumar A, Mohanty S, Sahni K, Kumar R, Gupta S. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo. J Cutan Aesthet Surg. 2013;6(2):121–5. https://doi.org/10.4103/0974-2077.112679.

    Article  PubMed Central  PubMed  Google Scholar 

  214. Mohanty S, Kumar A, Dhawan J, Sreenivas V, Gupta S. Noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo. Br J Dermatol. 2011;164(6):1241–6. https://doi.org/10.1111/j.1365-2133.2011.10234.x.

    Article  CAS  PubMed  Google Scholar 

  215. Chen YF, Yang PY, Hu DN, Kuo FS, Hung CS, Hung CM. Treatment of vitiligo by transplantation of cultured pure melanocyte suspension: analysis of 120 cases. J Am Acad Dermatol. 2004;51(1):68–74. https://doi.org/10.1016/j.jaad.2003.12.013.

    Article  PubMed  Google Scholar 

  216. Hong WS, Hu DN, Qian GP, McCormick SA, Xu AE. Treatment of vitiligo in children and adolescents by autologous cultured pure melanocytes transplantation with comparison of efficacy to results in adults. J Eur Acad Dermatol Venereol. 2011;25(5):538–43. https://doi.org/10.1111/j.1468-3083.2010.03824.x.

    Article  CAS  PubMed  Google Scholar 

  217. Lommerts JE, Uitentuis SE, Bekkenk MW, de Rie MA, Wolkerstorfer A. The role of phototherapy in the surgical treatment of vitiligo: a systematic review. J Eur Acad Dermatol Venereol. 2018;32(9):1427–35. https://doi.org/10.1111/jdv.14950.

    Article  CAS  PubMed  Google Scholar 

  218. Hesseler MJ, Shyam N. Platelet-rich plasma and its utility in medical dermatology: a systematic review. J Am Acad Dermatol. 2019;81(3):834–46. https://doi.org/10.1016/j.jaad.2019.04.037.

    Article  PubMed  Google Scholar 

  219. Rekik M, Mseddi M, Kammoun N, Sellami K, Turki H. Efficacy of autologous platelet-rich plasma in the treatment of vitiligo: a 10-patient prospective study. J Cosmet Dermatol. 2022. https://doi.org/10.1111/jocd.15050.

    Article  PubMed  Google Scholar 

  220. Afify AA, Zuelfakkar NM, Eshafi MA. Fractional CO2 laser, platelet rich plasma and narrow band ultraviolet B in the treatment of Vitiligo (a randomized clinical trial). Lasers Med Sci. 2021;36(7):1479–86. https://doi.org/10.1007/s10103-020-03195-9.

    Article  PubMed  Google Scholar 

  221. Chen J, Wan Y, Lin Y, Jiang H. Current art of combination therapy with autologous platelet-rich plasma for stable vitiligo: a meta-analysis. Int Wound J. 2021;18(3):251–60. https://doi.org/10.1111/iwj.13524.

    Article  PubMed  Google Scholar 

  222. Deng Y, Li J, Yang G. 308-nm excimer laser plus platelet-rich plasma for treatment of stable vitiligo: a prospective, randomized case-control study. Clin Cosmet Investig Dermatol. 2020;13:461–7. https://doi.org/10.2147/CCID.S260434.

    Article  PubMed Central  PubMed  Google Scholar 

  223. Khattab FM, Abdelbary E, Fawzi M. Evaluation of combined excimer laser and platelet-rich plasma for the treatment of nonsegmental vitiligo: a prospective comparative study. J Cosmet Dermatol. 2020;19(4):869–77. https://doi.org/10.1111/jocd.13103.

    Article  PubMed  Google Scholar 

  224. Kadry M, Tawfik A, Abdallah N, Badawi A, Shokeir H. Platelet-rich plasma versus combined fractional carbon dioxide laser with platelet-rich plasma in the treatment of vitiligo: a comparative study. Clin Cosmet Investig Dermatol. 2018;11:551–9. https://doi.org/10.2147/CCID.S178817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Abdelghani R, Ahmed NA, Darwish HM. Combined treatment with fractional carbon dioxide laser, autologous platelet-rich plasma, and narrow band ultraviolet B for vitiligo in different body sites: a prospective, randomized comparative trial. J Cosmet Dermatol. 2018;17(3):365–72. https://doi.org/10.1111/jocd.12397.

    Article  PubMed  Google Scholar 

  226. Raizada A, Panda M, Singh BS, Kar BR. Fractional carbon dioxide laser versus fractional carbon dioxide laser with autologous intralesional platelet-rich plasma in the treatment of stable, non-segmental vitiligo: a randomized comparative study. J Cutan Aesthet Surg. 2021;14(1):55–63. https://doi.org/10.4103/JCAS.JCAS_188_19.

    Article  PubMed Central  PubMed  Google Scholar 

  227. Mercuri SR, Di Nicola MR, Brianti P, Bianchi VG, Paolino G. Pilot study on the use of the “monocyte-rich” platelet-rich plasma in combination with 1927 nm fractional and 308 nm excimer lasers for the treatment of vitiligo. Medicina (Kaunas). 2021;57(9):904. https://doi.org/10.3390/medicina57090904.

    Article  PubMed  Google Scholar 

  228. Salem SAM, Fezeaa TA, El Khazragy N, Soltan MY. Effect of platelet-rich plasma on the outcome of mini-punch grafting procedure in localized stable vitiligo: clinical evaluation and relation to lesional basic fibroblast growth factor. Dermatol Ther. 2021;34(2): e14738. https://doi.org/10.1111/dth.14738.

    Article  CAS  PubMed  Google Scholar 

  229. Ibrahim ZA, El-Ashmawy AA, El-Tatawy RA, Sallam FA. The effect of platelet-rich plasma on the outcome of short-term narrowband-ultraviolet B phototherapy in the treatment of vitiligo: a pilot study. J Cosmet Dermatol. 2016;15(2):108–16. https://doi.org/10.1111/jocd.12194.

    Article  PubMed  Google Scholar 

  230. Yin L, Adotama P, Svigos K, Gutierrez D, Lo SK. Platelet-rich plasma, a promising adjunctive treatment for vitiligo: a case report. JAAD Case Rep. 2020;6(12):1320–2. https://doi.org/10.1016/j.jdcr.2020.09.021.

    Article  PubMed Central  PubMed  Google Scholar 

  231. Parambath N, Sharma VK, Parihar AS, Sahni K, Gupta S. Use of platelet-rich plasma to suspend noncultured epidermal cell suspension improves repigmentation after autologous transplantation in stable vitiligo: a double-blind randomized controlled trial. Int J Dermatol. 2019;58(4):472–6. https://doi.org/10.1111/ijd.14286.

    Article  CAS  PubMed  Google Scholar 

  232. Albalat W, Elsayed M, Salem A, Ehab R, Fawzy M. Non-cultured epidermal cells suspended in either platelet-rich plasma or ringer lactate for stable vitiligo: a prospective comparative study. J Cosmet Dermatol. 2022;21(7):3102–9. https://doi.org/10.1111/jocd.14576.

    Article  PubMed  Google Scholar 

  233. De Cuyper C. Permanent makeup: indications and complications. Clin Dermatol. 2008;26(1):30–4. https://doi.org/10.1016/j.clindermatol.2007.10.009.

    Article  PubMed  Google Scholar 

  234. Halder RM, Pham HN, Breadon JY, Johnson BA. Micropigmentation for the treatment of vitiligo. J Dermatol Surg Oncol. 1989;15(10):1092–8. https://doi.org/10.1111/j.1524-4725.1989.tb03129.x.

    Article  CAS  PubMed  Google Scholar 

  235. Mahajan BB, Garg G, Gupta RR. Evaluation of cosmetic tattooing in localised stable vitiligo. J Dermatol. 2002;29(11):726–30. https://doi.org/10.1111/j.1346-8138.2002.tb00210.x.

    Article  PubMed  Google Scholar 

  236. Eun SH, Lee HN, Kim SH, et al. Micropigmentation for acral vitiligo: an open-label pilot study of 12 patients. Korean J Dermatol. 2020;58:20–5.

    Google Scholar 

  237. Singh AK, Karki D. Micropigmentation: tattooing for the treatment of lip vitiligo. J Plast Reconstr Aesthet Surg. 2010;63(6):988–91. https://doi.org/10.1016/j.bjps.2009.03.013.

    Article  PubMed  Google Scholar 

  238. Francis A, Criton S, Shojan A, Philip R. Micropigmentation in vitiligo of lateral lower lip. J Cutan Aesthet Surg. 2013;6(4):236–7. https://doi.org/10.4103/0974-2077.123416.

    Article  PubMed Central  PubMed  Google Scholar 

  239. Ju HJ, Eun SH, Lee HN, Lee JH, Kim GM, Bae JM. Micropigmentation for vitiligo on light to moderately colored skin: updated evidence from a clinical and animal study. J Dermatol. 2020;47(5):464–9. https://doi.org/10.1111/1346-8138.15282.

    Article  CAS  PubMed  Google Scholar 

  240. Singh H, Kumaran MS, Bains A, Parsad D. A Randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology. 2015;231(3):286–90. https://doi.org/10.1159/000433424.

    Article  CAS  PubMed  Google Scholar 

  241. Garza-Mayers AC, Kroshinsky D. Low-dose methotrexate for vitiligo. J Drugs Dermatol. 2017;16(7):705–6.

    PubMed  Google Scholar 

  242. Ugurer E, Altunay IK, Erdem Y, Ozkur E, Tuncel D. Undesirable repigmentation in vitiligo patient receiving methotrexate therapy for the treatment of psoriasis: treatment or side effect? Dermatol Online J. 2022. https://doi.org/10.5070/D328157067.

    Article  PubMed  Google Scholar 

  243. Abdelmaksoud A, Dave DD, Lotti T, Vestita M. Topical methotrexate 1% gel for treatment of vitiligo: a case report and review of the literature. Dermatol Ther. 2019;32(5): e13013. https://doi.org/10.1111/dth.13013.

    Article  PubMed  Google Scholar 

  244. Song X, Xu A, Pan W, Wallin B, Kivlin R, Lu S, Cao C, Bi Z, Wan Y. Minocycline protects melanocytes against H2O2-induced cell death via JNK and p38 MAPK pathways. Int J Mol Med. 2008;22(1):9–16.

    PubMed  Google Scholar 

  245. Parsad D, Kanwar A. Oral minocycline in the treatment of vitiligo: a preliminary study. Dermatol Ther. 2010;23(3):305–7. https://doi.org/10.1111/j.1529-8019.2010.01328.x.

    Article  PubMed  Google Scholar 

  246. Singh A, Kanwar AJ, Parsad D, Mahajan R. Randomized controlled study to evaluate the effectiveness of dexamethasone oral minipulse therapy versus oral minocycline in patients with active vitiligo vulgaris. Indian J Dermatol Venereol Leprol. 2014;80(1):29–35. https://doi.org/10.4103/0378-6323.125479.

    Article  PubMed  Google Scholar 

  247. Siadat AH, Zeinali N, Iraji F, Abtahi-Naeini B, Nilforoushzadeh MA, Jamshidi K, Khosravani P. Narrow-band ultraviolet B versus oral minocycline in treatment of unstable vitiligo: a prospective comparative trial. Dermatol Res Pract. 2014;2014: 240856. https://doi.org/10.1155/2014/240856.

    Article  PubMed Central  PubMed  Google Scholar 

  248. Charoenpongpun N, Kamanamool N, Udompataikul M, Khunkhet S, Kanokrungsee S. A pilot study of combined oral minocycline and narrowband UVB phototherapy in vitiligo: a randomized, double-blind, placebo-controlled trial. Dermatol Ther. 2022;35(8): e15596. https://doi.org/10.1111/dth.15596.

    Article  CAS  PubMed  Google Scholar 

  249. Radmanesh M, Saedi K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J Dermatolog Treat. 2006;17(3):151–3. https://doi.org/10.1080/09546630600791442.

    Article  CAS  PubMed  Google Scholar 

  250. Patra S, Khaitan BK, Sharma VK, Khanna N. A randomized comparative study of the effect of betamethasone oral mini-pulse therapy versus oral azathioprine in progressive nonsegmental vitiligo. J Am Acad Dermatol. 2021;85(3):728–9. https://doi.org/10.1016/j.jaad.2019.03.025.

    Article  CAS  PubMed  Google Scholar 

  251. Khondker L, Khan SI. Efficacy of levamisole for the treatment of slow spreading vitiligo. Mymensingh Med J. 2013;22(4):761–6.

    CAS  PubMed  Google Scholar 

  252. Agarwal S, Ramam M, Sharma VK, Khandpur S, Pal H, Pandey RM. A randomized placebo-controlled double-blind study of levamisole in the treatment of limited and slowly spreading vitiligo. Br J Dermatol. 2005;153(1):163–6. https://doi.org/10.1111/j.1365-2133.2005.06556.x.

    Article  CAS  PubMed  Google Scholar 

  253. Pasricha JS, Khera V. Effect of prolonged treatment with levamisole on vitiligo with limited and slow-spreading disease. Int J Dermatol. 1994;33(8):584–7. https://doi.org/10.1111/j.1365-4362.1994.tb02903.x.

    Article  CAS  PubMed  Google Scholar 

  254. Majid I, Imran S, Batool S. Apremilast is effective in controlling the progression of adult vitiligo: a case series. Dermatol Ther. 2019;32(4): e12923. https://doi.org/10.1111/dth.12923.

    Article  PubMed  Google Scholar 

  255. Khemis A, Fontas E, Moulin S, Montaudié H, Lacour JP, Passeron T. Apremilast in combination with narrowband UVB in the treatment of vitiligo: a 52-week monocentric prospective randomized placebo-controlled study. J Investig Dermatol. 2020;140(8):1533-1537.e2. https://doi.org/10.1016/j.jid.2019.11.031.

    Article  CAS  PubMed  Google Scholar 

  256. Kim HJ, Singer GK, Del Duca E, Abittan BJ, Chima MA, Kimmel G, Bares J, Gagliotti M, Genece J, Chu J, Wilding G, Pavel AB, Guttman-Yassky E, Lebwohl MG. Combination of apremilast and narrowband ultraviolet B light in the treatment of generalized vitiligo in skin phototypes IV to VI: a randomized split-body pilot study. J Am Acad Dermatol. 2021;85(6):1657–60. https://doi.org/10.1016/j.jaad.2020.12.073.

    Article  PubMed  Google Scholar 

  257. Kim HJ, Del Duca E, Pavel AB, Singer GK, Abittan BJ, Chima MA, Kimmel G, Bares J, Baum D, Gagliotti M, Genece J, Chu J, Lebwohl MG, Guttman-Yassky E. Apremilast and narrowband ultraviolet B combination therapy suppresses Th17 axis and promotes melanogenesis in vitiligo skin: a randomized, split-body, pilot study in skin types IV–VI. Arch Dermatol Res. 2022. https://doi.org/10.1007/s00403-022-02343-1.

    Article  PubMed  Google Scholar 

  258. Dell’Anna ML, Mastrofrancesco A, Sala R, Venturini M, Ottaviani M, Vidolin AP, Leone G, Calzavara PG, Westerhof W, Picardo M. Antioxidants and narrow band-UVB in the treatment of vitiligo: a double-blind placebo controlled trial. Clin Exp Dermatol. 2007;32(6):631–6. https://doi.org/10.1111/j.1365-2230.2007.02514.x.

    Article  CAS  PubMed  Google Scholar 

  259. Jung HM, Jung YS, Lee JH, Kim GM, Bae JM. Antioxidant supplements in combination with phototherapy for vitiligo: a systematic review and metaanalysis of randomized controlled trials. J Am Acad Dermatol. 2021;85(2):506–8. https://doi.org/10.1016/j.jaad.2018.10.010.

    Article  PubMed  Google Scholar 

  260. Parsad D, Pandhi R, Juneja A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin Exp Dermatol. 2003;28(3):285–7. https://doi.org/10.1046/j.1365-2230.2003.01207.x.

    Article  CAS  PubMed  Google Scholar 

  261. Szczurko O, Shear N, Taddio A, Boon H. Ginkgo biloba for the treatment of vitilgo vulgaris: an open label pilot clinical trial. BMC Complement Altern Med. 2011;11:21. https://doi.org/10.1186/1472-6882-11-21.

    Article  PubMed Central  PubMed  Google Scholar 

  262. Gonzalez S, Gilaberte Y, Philips N. Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and topical photoprotective agent. Photochem Photobiol Sci. 2010;9(4):559–63. https://doi.org/10.1039/b9pp00156e.

    Article  CAS  PubMed  Google Scholar 

  263. Reyes E, Jaén P, de las Heras E, Carrión F, Alvarez-Mon M, de Eusebio E, Alvare M, Cuevas J, González S, Villarrubia VG. Systemic immunomodulatory effects of Polypodium leucotomos as an adjuvant to PUVA therapy in generalized vitiligo: a pilot study. J Dermatol Sci. 2006;41(3):213–6. https://doi.org/10.1016/j.jdermsci.2005.12.006.

    Article  PubMed  Google Scholar 

  264. Pacifico A, Damiani G, Iacovelli P, Conic RRZ, Young Dermatologists Italian Network (YDIN), Gonzalez S, Morrone A. NB-UVB plus oral Polypodium leucotomos extract display higher efficacy than NB-UVB alone in patients with vitiligo. Dermatol Ther. 2021;34(2): e14776. https://doi.org/10.1111/dth.14776.

    Article  CAS  PubMed  Google Scholar 

  265. Middelkamp-Hup MA, Bos JD, Rius-Diaz F, Gonzalez S, Westerhof W. Treatment of vitiligo vulgaris with narrow-band UVB and oral Polypodium leucotomos extract: a randomized double-blind placebo-controlled study. J Eur Acad Dermatol Venereol. 2007;21(7):942–50. https://doi.org/10.1111/j.1468-3083.2006.02132.x.

    Article  CAS  PubMed  Google Scholar 

  266. Phan K, Phan S, Shumack S, Gupta M. Repigmentation in vitiligo using janus kinase (JAK) inhibitors with phototherapy: systematic review and meta-analysis. J Dermatolog Treat. 2022;33(1):173–7. https://doi.org/10.1080/09546634.2020.1735615.

    Article  CAS  PubMed  Google Scholar 

  267. Rosmarin D, Passeron T, Pandya AG, Grimes P, Harris JE, Desai SR, Lebwohl M, Ruer-Mulard M, Seneschal J, Wolkerstorfer A, Kornacki D, Sun K, Butler K, Ezzedine K. Efficacy and safety of ruxolitinib cream monotherapy for the treatment of vitiligo: results from two 52-week phase 3 studies. Presented at the American Academy of Dermatology Annual Meeting, 25–29 March 2022, Boston.

  268. Rosmarin D, Passeron T, Pandya AG, Grimes P, Harris JE, Desai SR, Lebwohl M, Ruer-Mulard M, Seneschal J, Wolkerstorfer A, Kornacki D, Sun K, Butler K, Ezzedine K, TRuE-V Study Group. Two phase 3, randomized, controlled trials of ruxolitinib cream for vitiligo. N Engl J Med. 2022;387(16):1445–55. https://doi.org/10.1056/NEJMoa2118828.

    Article  CAS  PubMed  Google Scholar 

  269. Rosmarin D, Pandya AG, Lebwohl M, Grimes P, Hamzavi I, Gottlieb AB, Butler K, Kuo F, Sun K, Ji T, Howell MD, Harris JE. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial. Lancet. 2020;396(10244):110–20. https://doi.org/10.1016/S0140-6736(20)30609-7.

    Article  CAS  PubMed  Google Scholar 

  270. Harris JE, Pandya AG, Lebwohl M, Hamzavi IH, Grimes P, Gottlieb AB, Sofen HL, Moore AY, Wang M, Kornacki D, Butler K, Rosmarin D. Safety and efficacy of ruxolitinib cream for the treatment of vitiligo: 156-week data from a phase 2 study. Presented at the British Association of Dermatologists Annual Meeting, 5–7 July 2022, Glasgow.

  271. Rosmarin D, Ezzedine K, Desai SR, Seneschal J, Kornacki D, Sun K, Butler K, Passeron T. Efficacy and safety of Ruxolitinib cream for the treatment of vitiligo by patient demographics and baseline clinical characteristics: pooled subgroup analysis from two randomized phase 3 studies. Presented at the American Academy of Dermatology Annual Meeting, 25–29 March 2022, Boston.

  272. Rosmarin D, Seneschal J, Grimes P, Desai SR, Pandya AG, Kornacki D, Wang M, Butler K, Ezzedine K. Efficacy and safety of ruxolitinib cream in adolescent patients with vitiligo: pooled analyses of the 52-week TRuE-V phase 3 studies. Presented at the Society for Pediatric Dermatology Annual Meeting, 7–10 July 2022, Indianapolis.

  273. Passeron T, Harris JE, Pandya AG, Seneschal J, Grimes P, Kornacki D, Wang M, Butler K, Ezzedine K, Rosmarin D. Effect of ruxolitinib cream on achievement of VASI50 by body region: week 52 pooled analysis of the TRuE-V phase 3 studies. Presented at the European Academy of Dermatology of Venereology (EADV) Congress, 7–10 September 2022, Milan.

  274. Hamzavi I, Rosmarin D, Harris JE, Pandya AG, Lebwohl M, Gottlieb AB, Butler K, Kuo FI, Sun K, Grimes P. Efficacy of ruxolitinib cream in vitiligo by patient characteristics and affected body areas: descriptive subgroup analyses from a phase 2, randomized, double-blind trial. J Am Acad Dermatol. 2022;86(6):1398–401. https://doi.org/10.1016/j.jaad.2021.05.047.

    Article  CAS  PubMed  Google Scholar 

  275. Rosmarin D, Pandya AG, Grimes P, Lebwohl M, Gottlieb AB, Hamzavi IH, Butler K, Wei S, Rumberger B, Harris JE. Maintenance of repigmentation after discontinuation of ruxolitinib cream in patients with vitiligo. Presented at the European Society for Dermatological Research Annual Meeting, 22–25 September 2021, Virtual.

  276. Nicolaidou E, Antoniou C, Stratigos AJ, Stefanaki C, Katsambas AD. Efficacy, predictors of response, and long-term follow-up in patients with vitiligo treated with narrowband UVB phototherapy. J Am Acad Dermatol. 2007;56(2):274–8. https://doi.org/10.1016/j.jaad.2006.09.004.

    Article  PubMed  Google Scholar 

  277. Joshipura D, Alomran A, Zancanaro P, Rosmarin D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib: a 32-week open-label extension study with optional narrow-band ultraviolet B. J Am Acad Dermatol. 2018;78(6):1205-1207.e1. https://doi.org/10.1016/j.jaad.2018.02.023.

    Article  PubMed  Google Scholar 

  278. Olamiju B, Craiglow BG. Tofacitinib cream plus narrowband ultraviolet B phototherapy for segmental vitiligo in a child. Pediatr Dermatol. 2020;37(4):754–5. https://doi.org/10.1111/pde.14159.

    Article  PubMed  Google Scholar 

  279. Pandya AG, Harris JE, Lebwohl M, Hamzavi IH, Butler K, Kuo FI, Wei S, Rosmarin D. Addition of narrow-band UVB phototherapy to ruxolitinib cream in patients with vitiligo. J Investig Dermatol. 2022. https://doi.org/10.1016/j.jid.2022.05.1093.

    Article  PubMed  Google Scholar 

  280. Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 2015;151(10):1110–2. https://doi.org/10.1001/jamadermatol.2015.1520.

    Article  PubMed  Google Scholar 

  281. Vu M, Heyes C, Robertson SJ, Varigos GA, Ross G. Oral tofacitinib: a promising treatment in atopic dermatitis, alopecia areata and vitiligo. Clin Exp Dermatol. 2017;42(8):942–4. https://doi.org/10.1111/ced.13290.

    Article  CAS  PubMed  Google Scholar 

  282. Komnitski M, Komnitski A, Komnitski Junior A, Silva de Castro CC. Partial repigmentation of vitiligo with tofacitinib, without exposure to ultraviolet radiation. An Bras Dermatol. 2020;95(4):473–6. https://doi.org/10.1016/j.abd.2019.08.032.

    Article  PubMed Central  PubMed  Google Scholar 

  283. Moore AY, Cepica T, Maberry S. Amelioration of unstable vitiligo and normalization of thryroglobulin antibodies with oral tofacitinib. JAAD Case Rep. 2022;23:64–6. https://doi.org/10.1016/j.jdcr.2022.02.025.

    Article  PubMed Central  PubMed  Google Scholar 

  284. Dong J, Huang X, Ma LP, Qi F, Wang SN, Zhang ZQ, Wei SN, Gao L, Liu F. Baricitinib is effective in treating progressing vitiligo in vivo and in vitro. Dose Response. 2022;20(2): 15593258221105370. https://doi.org/10.1177/15593258221105370.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  285. Mumford BP, Gibson A, Chong AH. Repigmentation of vitiligo with oral baricitinib. Australas J Dermatol. 2020;61(4):374–6. https://doi.org/10.1111/ajd.13348.

    Article  PubMed  Google Scholar 

  286. Harris JE, Rashighi M, Nguyen N, Jabbari A, Ulerio G, Clynes R, Christiano AM, Mackay-Wiggan J. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J Am Acad Dermatol. 2016;74(2):370–1. https://doi.org/10.1016/j.jaad.2015.09.073.

    Article  PubMed  Google Scholar 

  287. Ezzedine, K, Peeva E, Yamaguchi Y, Cox LA, Banerjee A, Han G, Hamzavi I, Ganesan AK, Picardo M, Thaci D, Harris JE, Bae JM, Tsukamoto K, Sinclair R, Pandya AG, Sloan A, Yu D, Gandhi K, Vincent MS, King B. Efficacy and safety of the oral kanus kinase 3/TEC inhibitor ritlecitinib (PF-06651600) in adults with active non-segmental vitiligo: results from a phase 2b, randomized, dose-ranging study with an extension period. Presented at the European Academy of Dermatology and Venereology Congress, 29 September–2 October 2021.

  288. Liu LY, Strassner JP, Refat MA, Harris JE, King BA. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J Am Acad Dermatol. 2017;77(4):675-682.e1. https://doi.org/10.1016/j.jaad.2017.05.043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Kim SR, Heaton H, Liu LY, King BA. Rapid repigmentation of vitiligo using tofacitinib plus low-dose, narrowband UV-B phototherapy. JAMA Dermatol. 2018;154(3):370–1. https://doi.org/10.1001/jamadermatol.2017.5778.

    Article  PubMed  Google Scholar 

  290. Gianfaldoni S, Tchernev G, Wollina U, Roccia MG, Fioranelli M, Lotti J, Rovesti M, Satolli F, Valle Y, Goren A, Tirant M, Situm M, Kovacevic M, França K, Lotti T. Micro-focused phototherapy associated to janus kinase inhibitor: a promising valid therapeutic option for patients with localized vitiligo. Open Access Maced J Med Sci. 2018;6(1):46–8. https://doi.org/10.3889/oamjms.2018.042.

    Article  PubMed Central  PubMed  Google Scholar 

  291. Tajalli M, Kabir S, Vance TM, Qureshi AA. Effective use of oral tofacitinib and phototherapy in a patient with concomitant alopecia areata, vitiligo, and plaque and inverse psoriasis. Clin Case Rep. 2020;8(5):819–22. https://doi.org/10.1002/ccr3.2759.

    Article  PubMed Central  PubMed  Google Scholar 

  292. Elmariah SB, Smith JS, Merola JF. JAK in the [black] box: a dermatology perspective on systemic JAK inhibitor safety. Am J Clin Dermatol. 2022;23(4):427–31. https://doi.org/10.1007/s40257-022-00701-3.

    Article  PubMed  Google Scholar 

  293. Yang BJ, Fan SR, Zhang XF, Cai JY, Ruan T, Xiang ZR, Ren J, Hao XJ, Chen DZ. Design, synthesis and structure-activity relationship optimization of phenanthridine derivatives as new anti-vitiligo compounds. Bioorg Chem. 2022;119: 105582. https://doi.org/10.1016/j.bioorg.2021.105582.

    Article  CAS  PubMed  Google Scholar 

  294. Zou DP, Chen YM, Zhang LZ, Yuan XH, Zhang YJ, Inggawati A, Kieu Nguyet PT, Gao TW, Chen J. SFRP5 inhibits melanin synthesis of melanocytes in vitiligo by suppressing the Wnt/β-catenin signaling. Genes Dis. 2020;8(5):677–88. https://doi.org/10.1016/j.gendis.2020.06.003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Mosenson JA, Zloza A, Nieland JD, Garrett-Mayer E, Eby JM, Huelsmann EJ, Kumar P, Denman CJ, Lacek AT, Kohlhapp FJ, Alamiri A, Hughes T, Bines SD, Kaufman HL, Overbeck A, Mehrotra S, Hernandez C, Nishimura MI, Guevara-Patino JA, Le Poole IC. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med. 2013;5(174): 174ra28. https://doi.org/10.1126/scitranslmed.3005127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy. Cell Mol Immunol. 2018;15(5):470–9. https://doi.org/10.1038/cmi.2017.161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. Chatterjee S, Eby JM, Al-Khami AA, Soloshchenko M, Kang HK, Kaur N, Naga OS, Murali A, Nishimura MI, Caroline Le Poole I, Mehrotra S. A quantitative increase in regulatory T cells controls development of vitiligo. J Investig Dermatol. 2014;134(5):1285–94. https://doi.org/10.1038/jid.2013.540.

    Article  CAS  PubMed  Google Scholar 

  298. Tulic MK, Cavazza E, Cheli Y, Jacquel A, Luci C, Cardot-Leccia N, Hadhiri-Bzioueche H, Abbe P, Gesson M, Sormani L, Regazzetti C, Beranger GE, Lereverend C, Pons C, Khemis A, Ballotti R, Bertolotto C, Rocchi S, Passeron T. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat Commun. 2019;10(1):2178. https://doi.org/10.1038/s41467-019-09963-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaitlynne N. Cunningham.

Ethics declarations

Conflict of interest

Kaitlynne N. Cunningham declares no conflicts of interest. David Rosmarin has received honoraria as a consultant for AbbVie, Abcuro, AltruBio, Arena, Boehringer-Ingelheim, Bristol Myers Squibb, Celgene, Concert, CSL Behring, Dermavant, Dermira, Incyte, Janssen, Kyowa Kirin, Lilly, Novartis, Pfizer, Regeneron, Revolo Biotherapeutics, Sanofi, Sun Pharmaceuticals, UCB, and VielaBio; has received research support from AbbVie, Amgen, Bristol Myers Squibb, Celgene, Dermira, Galderma, Incyte, Janssen, Lilly, Merck, Novartis, Pfizer, and Regeneron Pharmaceuticals Inc; and has served as a paid speaker for AbbVie, Amgen, Bristol Myers Squibb, Celgene, Incyte, Janssen, Lilly, Novartis, Pfizer, Regeneron Pharmaceuticals Inc., and Sanofi.

Funding

Not applicable.

Ethics approval

Not applicable.

Patient consent to participate/publish

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Author contributions

Kaitlynne N. Cunningham wrote the manuscript, completed the literature review, edited the manuscript, and read and approved the final version of the manuscript for publication. David Rosmarin supervised the work, critically reviewed and edited the manuscript, and read and approved the final version of the manuscript for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunningham, K.N., Rosmarin, D. Vitiligo Treatments: Review of Current Therapeutic Modalities and JAK Inhibitors. Am J Clin Dermatol 24, 165–186 (2023). https://doi.org/10.1007/s40257-022-00752-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-022-00752-6

Navigation