Skip to main content

Advertisement

Log in

Topical JAK Inhibitors for the Treatment of Alopecia Areata and Vitiligo

  • Cutaneous Drug Reactions (J Brieva, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Alopecia areata (AA) and vitiligo are dermatological autoimmune diseases that, until recently, have had no specifically targeted therapies. Here, we review the future of therapies specifically targeted to the treatment of alopecia areata and vitiligo, both of which have JAK-STAT signaling implicated in their pathogenesis.

Recent Findings

With a greater understanding of disease mechanisms and pathogenesis, we are now able to target the immune dysfunction in autoimmune diseases with more precision than topical corticosteroids and calcineurin inhibitors. Inhibition of the JAK-STAT pathway has been shown to be effective in the treatment of AA, vitiligo, and in some patients with both diseases.

Summary

In this review, we summarize the current molecular and immunological understanding of AA and vitiligo, how JAK inhibition is increasingly positioned as a new therapy for autoimmune diseases, and the future of topical JAK inhibitors in the field of dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Darnell Jr JE. STATs and gene regulation. Science. 1997;277(5332):1630–5.

    Article  CAS  PubMed  Google Scholar 

  2. • O'Shea JJ, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. Excellent perspective on the JAK-STAT pathway in relation to disease pathogenesis, and summary of strategies to target this pathway therapeutically

    Article  PubMed  Google Scholar 

  3. O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36(4):542–50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57(12):5023–38.

    Article  CAS  PubMed  Google Scholar 

  5. Menter MA, et al. Efficacy of tofacitinib for the treatment of moderate-to-severe chronic plaque psoriasis in patient subgroups from two randomised Phase 3 trials. J Drugs Dermatol. 2016;15(5):568–80.

    CAS  PubMed  Google Scholar 

  6. Sandborn WJ, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–24.

    Article  CAS  PubMed  Google Scholar 

  7. Vincenti F, et al. Evaluation of the effect of tofacitinib exposure on outcomes in kidney transplant patients. Am J Transplant. 2015;15(6):1644–53.

    Article  CAS  PubMed  Google Scholar 

  8. Papp KA, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a Phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.

    Article  CAS  PubMed  Google Scholar 

  9. Bachelez H, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–61.

    Article  CAS  PubMed  Google Scholar 

  10. Ports WC, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol. 2013;169(1):137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Punwani N, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuyama T, et al. Topically administered Janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J Pharmacol Exp Ther. 2015;354(3):394–405.

    Article  CAS  PubMed  Google Scholar 

  13. Olivry T, et al. Treatment of canine atopic dermatitis: 2015 updated guidelines from the international committee on allergic diseases of animals (ICADA). BMC Vet Res. 2015;11:210.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tanimoto A, et al. Pharmacological properties of JTE-052: a novel potent JAK inhibitor that suppresses various inflammatory responses in vitro and in vivo. Inflamm Res. 2015;64(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  15. Amano W, et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136(3):667–77. e7

    Article  CAS  PubMed  Google Scholar 

  16. Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73(3):395–9.

    Article  CAS  PubMed  Google Scholar 

  17. •• Xing L, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9. The first proof of a mechanism with information garnered from GWAS data, implicating the JAK-STAT pathway in the common effector pathways that drive CD8 NKG2D cells in AA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7. The pivotal GWAS that uncovered many possible genes associated with AA immunopathogenesis, including ULBP3 and CTLA-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Betz RC, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015;6:5966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dell'Anna ML, E. K, Hamzavi I, Harris J, Parsad D, Taieb A, Picardo M. Vitiligo. Nature Reviews Disease Primers. 2015;1(1):1–16.

    Google Scholar 

  21. Kroll TM, et al. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol. 2005;124(4):798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van den Boorn JG, et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J Invest Dermatol. 2011;131(6):1240–51.

    Article  PubMed  Google Scholar 

  23. Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132(11):2601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev. 2016;269(1):11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris JE. Vitiligo and alopecia areata: apples and oranges? Exp Dermatol. 2013;22(12):785–9.

    Article  PubMed  Google Scholar 

  26. Sadeghi S, et al. Study of Th1/Th2 balance in peripheral blood mononuclear cells of patients with alopecia areata. Acta Microbiol Immunol Hung. 2015;62(3):275–85.

    Article  CAS  PubMed  Google Scholar 

  27. Suarez-Farinas M, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87.

    Article  CAS  PubMed  Google Scholar 

  28. Gregg RK, et al. Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol. 2010;184(4):1909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris JE, et al. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Rashighi M, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23. Study in human patients and a mouse model that implicated the IFNg-CXCL10 cytokine axis in vitligo pathogenesis and provided the rationale for targeting the JAK-STAT pathway as a treatment strategy for vitiligo

    Article  PubMed  PubMed Central  Google Scholar 

  31. •• Harris JE, et al. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J Am Acad Dermatol. 2016;74(2):370–1. The first striking case report that suggested a mechanistic link between AA and vitiligo, and proof of concept that JAK inhibitors will be effective for both diseases

    Article  PubMed  Google Scholar 

  32. Wang XX, et al. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016;174(6):1318–26.

    Article  CAS  PubMed  Google Scholar 

  33. Rashighi M, Harris JE. Serum chemokines herald disease activity and treatment response in vitiligo patients. Br J Dermatol. 2016;174(6):1190–1.

    Article  CAS  PubMed  Google Scholar 

  34. Hordinsky M, Donati A. Alopecia areata: an evidence-based treatment update. Am J Clin Dermatol. 2014;15(3):231–46.

    Article  PubMed  Google Scholar 

  35. Oikarinen A, et al. The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol. 1998;139(6):1106–10.

    Article  CAS  PubMed  Google Scholar 

  36. Ring J, Mohrenschlager M, Henkel V. The US FDA ‘black box’ warning for topical calcineurin inhibitors: an ongoing controversy. Drug Saf. 2008;31(3):185–98.

    Article  CAS  PubMed  Google Scholar 

  37. Sobell JM, Leonardi CL. Therapeutic development in psoriasis. Semin Cutan Med Surg. 2014;33(4 Suppl):S69–72.

    Article  PubMed  Google Scholar 

  38. Papp K, et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br J Dermatol. 2015;173(4):930–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ritchlin CT, Krueger JG. New therapies for psoriasis and psoriatic arthritis. Curr Opin Rheumatol. 2016;28(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  40. Redler S, et al. Investigation of selected cytokine genes suggests that IL2RA and the TNF/LTA locus are risk factors for severe alopecia areata. Br J Dermatol. 2012;167(6):1360–5.

    Article  CAS  PubMed  Google Scholar 

  41. Laddha NC, Dwivedi M, Begum R. Increased tumor necrosis factor (TNF)-alpha and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS One. 2012;7(12):e52298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alghamdi KM, et al. Treatment of generalized vitiligo with anti-TNF-alpha agents. J Drugs Dermatol. 2012;11(4):534–9.

    CAS  PubMed  Google Scholar 

  43. Abramovits W, Losornio M. Failure of two TNF-alpha blockers to influence the course of alopecia areata. Skinmed. 2006;5(4):177–81.

    Article  PubMed  Google Scholar 

  44. Tauber M, et al. Alopecia areata occurring during anti-TNF therapy: a national multicenter prospective study. J Am Acad Dermatol. 2014;70(6):1146–9.

    Article  PubMed  Google Scholar 

  45. Maruthappu T, Leandro M, Morris SD. Deterioration of vitiligo and new onset of halo naevi observed in two patients receiving adalimumab. Dermatol Ther. 2013;26(4):370–2.

    Article  PubMed  Google Scholar 

  46. Mery-Bossard L, et al. New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases. J Eur Acad Dermatol Venereol. 2016.

  47. Jabbari A, et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine. 2015;2(4):351–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jabbari A, et al. Treatment of an alopecia areata patient with tofacitinib results in regrowth of hair and changes in serum and skin biomarkers. Exp Dermatol. 2016.

  49. • Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 2015;151(10):1110–2. First reported attempt to treat vitiligo with tofacitinib

    Article  PubMed  Google Scholar 

  50. Mackay-Wiggan J, et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight. 2016;1(15):e89790. doi:10.1172/jci.insight.89790.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pieri L, Guglielmelli P, Vannucchi AM. Ruxolitinib-induced reversal of alopecia universalis in a patient with essential thrombocythemia. Am J Hematol. 2015;90(1):82–3.

    Article  PubMed  Google Scholar 

  52. Higgins E, et al. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J Allergy Clin Immunol. 2015;135(2):551–3.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta AK, Carviel JL, Abramovits W. Efficacy of tofacitinib in treatment of alopecia universalis in two patients. J Eur Acad Dermatol Venereol. 2016;30(8):1373–8.

    Article  CAS  PubMed  Google Scholar 

  54. Anzengruber F, et al. Transient efficacy of tofacitinib in alopecia areata universalis. Case Rep Dermatol. 2016;8(1):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Crispin MK, et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight. 2016;1(15):e89776. doi:10.1172/jci.insight.89776.

    Google Scholar 

  56. Wang Y, et al. Effective treatment of experimental ragweed-induced asthma with STAT-6-IP, a topically delivered cell-penetrating peptide. Clin Exp Allergy. 2011;41(11):1622–30.

    Article  CAS  PubMed  Google Scholar 

  57. Fridman JS, et al. Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation. J Invest Dermatol. 2011;131(9):1838–44.

    Article  CAS  PubMed  Google Scholar 

  58. Craiglow BG, Tavares D, King BA. Topical ruxolitinib for the treatment of alopecia universalis. JAMA Dermatol. 2016;152(4):490–1.

    Article  PubMed  Google Scholar 

  59. Bissonnette R, et al. Topical tofacitinib for atopic dermatitis: a phase 2a randomised trial. Br J Dermatol. 2016.

  60. Harel S, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015;1(9):e1500973.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Punwani N, et al. Downmodulation of key inflammatory cell markers with a topical Janus kinase 1/2 inhibitor. Br J Dermatol. 2015;173(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  62. • Richmond JM, et al. Keratinocyte-derived chemokines orchestrate T cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J Invest Dermatol. 2016. Study that elegantly places the epidermal cells in the center of vitiligo pathogenesis, thus allowing it to be a suitable target for topical therapy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Etienne C. E. Wang or Angela M. Christiano.

Ethics declarations

Conflict of Interest

Etienne CE Wang declares no conflict of interest.

Dr. Christiano reports grants from National Institutes of Health, grants from Locks of Love Foundation, during the conduct of the study; personal fees from Aclaris Therapeutics, other from National Alopecia Areata Foundtion (NAAF), outside the submitted work. In addition, Dr. CHRISTIANO has a patent issued.

Dr. Harris reports grants and personal fees from Pfizer, grants and personal fees from Abbvie, Inc., grants and personal fees from Genzyme/Sanofi, personal fees from Concert Pharmaceuticals, grants from Stiefel/GSK, personal fees from Novartis, personal fees from Aclaris Therapeutics, Inc., grants from Celgene, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cutaneous Drug Reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E.C.E., Harris, J.E. & Christiano, A.M. Topical JAK Inhibitors for the Treatment of Alopecia Areata and Vitiligo. Curr Derm Rep 6, 1–6 (2017). https://doi.org/10.1007/s13671-017-0163-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-017-0163-z

Keywords

Navigation