Skip to main content
Log in

New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gooding HC, Gidding SS, Moran AE, Redmond N, Allen NB, Bacha F, Burns TL, Catov JM, Grandner MA, Harris KM, et al. Challenges and opportunities for the prevention and treatment of cardiovascular disease among young adults: report from a national heart, lung, and blood institute working group. J Am Heart Assoc. 2020;9: e016115. https://doi.org/10.1161/JAHA.120.016115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  3. Pourhanifeh MH, Dehdashtian E, Hosseinzadeh A, Sezavar SH, Mehrzadi S. Clinical application of melatonin in the treatment of cardiovascular diseases: current evidence and new insights into the cardioprotective and cardiotherapeutic properties. Cardiovasc Drugs Ther. 2020. https://doi.org/10.1007/s10557-020-07052-3.

    Article  PubMed  Google Scholar 

  4. Li Q, Li J, Chen L, Gao Y, Li J. Endogenous peptides profiles of human infantile hemangioma tissue and their clinical significance for treatment. J Cell Biochem. 2018;119:4636–43. https://doi.org/10.1002/jcb.26632.

    Article  CAS  PubMed  Google Scholar 

  5. Imenshahidi M, Karimi G, Hosseinzadeh H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:521–36. https://doi.org/10.1007/s00210-020-01822-4.

    Article  CAS  PubMed  Google Scholar 

  6. Ozkalayci F, Kocabas U, Altun BU, Pandi-Perumal S, Altun A. Relationship between melatonin and cardiovascular disease. Cureus. 2021;13: e12935. https://doi.org/10.7759/cureus.12935.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80:2587–2587. https://doi.org/10.1021/ja01543a060.

    Article  CAS  Google Scholar 

  8. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15:434–43. https://doi.org/10.2174/1570159X14666161228122115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci. 2000;917:376–86. https://doi.org/10.1111/j.1749-6632.2000.tb05402.x.

    Article  CAS  PubMed  Google Scholar 

  10. Acuna-Castroviejo D, Escames G, Venegas C, Diaz-Casado ME, Lima-Cabello E, Lopez LC, Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71:2997–3025. https://doi.org/10.1007/s00018-014-1579-2.

    Article  CAS  PubMed  Google Scholar 

  11. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A. 2017;114:E7997–8006. https://doi.org/10.1073/pnas.1705768114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG. Melatonin: a mitochondrial resident with a diverse skill set. Life Sci. 2022;301: 120612. https://doi.org/10.1016/j.lfs.2022.120612.

    Article  CAS  PubMed  Google Scholar 

  13. Martyniuk K, Hanuszewska M, Lewczuk B. Metabolism of melatonin synthesis-related indoles in the Turkey pineal organ and its modification by monochromatic light. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21249750.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baler R, Covington S, Klein DC. The rat arylalkylamine N-acetyltransferase gene promoter. cAMP activation via a cAMP-responsive element-CCAAT complex. J Biol Chem. 1997;272:6979–85. https://doi.org/10.1074/jbc.272.11.6979.

    Article  CAS  PubMed  Google Scholar 

  15. Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39:990–1028. https://doi.org/10.1210/er.2018-00084.

    Article  PubMed  Google Scholar 

  16. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med. 2016;48:135–41. https://doi.org/10.5152/eurasianjmed.2015.0267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kvetnoy IM. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J. 1999;31:1–12. https://doi.org/10.1023/a:1003431122334.

    Article  CAS  PubMed  Google Scholar 

  18. Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, de Almeida Chuffa LG. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci. 2023;80:88. https://doi.org/10.1007/s00018-023-04736-5.

    Article  CAS  PubMed  Google Scholar 

  19. Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules. 2015;20:18886–906. https://doi.org/10.3390/molecules201018886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, et al. Evidence for the benefits of melatonin in cardiovascular disease. Front Cardiovasc Med. 2022;9: 888319. https://doi.org/10.3389/fcvm.2022.888319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu L-M, Dong X, Xue X-D, Xu S, Zhang X, Xu Y-L, Wang Z-S, Wang Y, Gao H, Liang Y-X, et al. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6. J Pineal Res. 2021. https://doi.org/10.1111/jpi.12698.

    Article  PubMed  Google Scholar 

  22. Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, Li S, Tao B, Wang Y, Qiu Y, et al. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res. 2019. https://doi.org/10.1111/jpi.12571.

    Article  PubMed  Google Scholar 

  23. Dominguez-Rodriguez A, Hernandez-Vaquero D, Abreu-Gonzalez P, Baez-Ferrer N, Diaz R, Avanzas P, Simko F, Dominguez-Gonzalez V, Sharma R, Reiter RJ. Early treatment of acute myocardial infarction with melatonin: effects on MMP-9 and adverse cardiac events. J Clin Med. 2022;11:8. https://doi.org/10.3390/jcm11071909.

    Article  CAS  Google Scholar 

  24. Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: the possible involvement of macrophage apoptotic factors. J Pineal Res. 2023;74: e12847. https://doi.org/10.1111/jpi.12847.

    Article  CAS  PubMed  Google Scholar 

  25. Xie M, Tang Q, Nie J, Zhang C, Zhou X, Yu S, Sun J, Cheng X, Dong N, Hu Y, et al. BMAL1-downregulation aggravates porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circ Res. 2020;126:e15–29. https://doi.org/10.1161/CIRCRESAHA.119.315502.

    Article  CAS  PubMed  Google Scholar 

  26. Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med. 2020;25:295–301. https://doi.org/10.1177/1358863x20919798.

    Article  CAS  PubMed  Google Scholar 

  27. Singhanat K, Apaijai N, Chattipakorn SC, Chattipakorn N. Roles of melatonin and its receptors in cardiac ischemia-reperfusion injury. Cell Mol Life Sci. 2018;75:4125–49. https://doi.org/10.1007/s00018-018-2905-x.

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–83. https://doi.org/10.1146/annurev-pharmtox-010814-124742.

    Article  CAS  PubMed  Google Scholar 

  29. Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R. Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3’-5’-monophosphate pathway. Biochem Pharmacol. 1999;58:633–9. https://doi.org/10.1016/s0006-2952(99)00134-3.

    Article  CAS  PubMed  Google Scholar 

  30. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–10. https://doi.org/10.1385/ENDO:27:2:101.

    Article  CAS  PubMed  Google Scholar 

  31. Boutin JA. Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets. 2016;20:303–17. https://doi.org/10.1517/14728222.2016.1091882.

    Article  CAS  PubMed  Google Scholar 

  32. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E, Boutin JA. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275:31311–7. https://doi.org/10.1074/jbc.M005141200.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (Lausanne). 2019;10:249. https://doi.org/10.3389/fendo.2019.00249.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Binding of 3H-melatonin to calmodulin. Life Sci. 1993;53:201–7. https://doi.org/10.1016/0024-3205(93)90670-x.

    Article  CAS  PubMed  Google Scholar 

  35. Carlberg C. Gene regulation by melatonin. Ann N Y Acad Sci. 2000;917:387–96. https://doi.org/10.1111/j.1749-6632.2000.tb05403.x.

    Article  CAS  PubMed  Google Scholar 

  36. Zalba G, Moreno MU. Oxidative stress in cardiovascular disease and comorbidities. Antioxidants (Basel, Switzerland). 2022. https://doi.org/10.3390/antiox11081519.

    Article  PubMed  Google Scholar 

  37. Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Recent progress in vascular aging: mechanisms and its role in age-related diseases. Aging Dis. 2017;8:486–505. https://doi.org/10.14336/AD.2017.0507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res. 2018;65: e12514. https://doi.org/10.1111/jpi.12514.

    Article  CAS  PubMed  Google Scholar 

  39. Reybier K, Perio P, Ferry G, Bouajila J, Delagrange P, Boutin JA, Nepveu F. Insights into the redox cycle of human quinone reductase 2. Free Radic Res. 2011;45:1184–95. https://doi.org/10.3109/10715762.2011.605788.

    Article  CAS  PubMed  Google Scholar 

  40. Florido J, Rodriguez-Santana C, Martinez-Ruiz L, Lopez-Rodriguez A, Acuna-Castroviejo D, Rusanova I, Escames G. Understanding the mechanism of action of melatonin, which induces ROS production in cancer cells. Antioxidants (Basel, Switzerland). 2022. https://doi.org/10.3390/antiox11081621.

    Article  PubMed  Google Scholar 

  41. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9. https://doi.org/10.1046/j.1600-079x.2003.00092.x.

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Gonzalez A, Castaneda-Arriaga R, Alvarez-Idaboy JR, Reiter RJ, Galano A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res. 2019;66: e12539. https://doi.org/10.1111/jpi.12539.

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Horke S, Forstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013;34:313–9. https://doi.org/10.1016/j.tips.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  44. Winiarska K, Dzik JM, Labudda M, Focht D, Sierakowski B, Owczarek A, Komorowski L, Bielecki W. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res. 2016;60:109–17. https://doi.org/10.1111/jpi.12296.

    Article  CAS  PubMed  Google Scholar 

  45. Qin T, Feng D, Zhou B, Bai L, Yin Y. Melatonin suppresses LPS-induced oxidative stress in dendritic cells for inflammatory regulation via the Nrf2/HO-1 axis. Antioxidants (Basel, Switzerland). 2022. https://doi.org/10.3390/antiox11102012.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Butsanets PA, Baik AS, Shugaev AG, Kuznetsov VV. Melatonin inhibits peroxide production in plant mitochondria. Dokl Biochem Biophys. 2019;489:367–9. https://doi.org/10.1134/S1607672919060036.

    Article  CAS  PubMed  Google Scholar 

  47. Chao CC, Chen PC, Chiou PC, Hsu CJ, Liu PI, Yang YC, Reiter RJ, Yang SF, Tang CH. Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin Sci (Lond). 2019;133:709–22. https://doi.org/10.1042/CS20180945.

    Article  CAS  PubMed  Google Scholar 

  48. Roifman I, Beck PL, Anderson TJ, Eisenberg MJ, Genest J. Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol. 2011;27:174–82. https://doi.org/10.1016/j.cjca.2010.12.040.

    Article  PubMed  Google Scholar 

  49. Blagov AV, Markin AM, Bogatyreva AI, Tolstik TV, Sukhorukov VN, Orekhov AN. The role of macrophages in the pathogenesis of atherosclerosis. Cells. 2023. https://doi.org/10.3390/cells12040522.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdul Ghani MA, Ugusman A, Latip J, Zainalabidin S. Role of terpenophenolics in modulating inflammation and apoptosis in cardiovascular diseases: a review. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24065339.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nabavi SM, Nabavi SF, Sureda A, Xiao J, Dehpour AR, Shirooie S, Silva AS, Baldi A, Khan H, Daglia M. Anti-inflammatory effects of Melatonin: a mechanistic review. Crit Rev Food Sci Nutr. 2019;59:S4–16. https://doi.org/10.1080/10408398.2018.1487927.

    Article  CAS  PubMed  Google Scholar 

  52. Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20051223.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hardeland R. Melatonin and inflammation-story of a double-edged blade. J Pineal Res. 2018;65: e12525. https://doi.org/10.1111/jpi.12525.

    Article  CAS  PubMed  Google Scholar 

  54. Gao T, Wang T, Wang Z, Cao J, Dong Y, Chen Y. Melatonin-mediated MT2 attenuates colitis induced by dextran sodium sulfate via PI3K/AKT/Nrf2/SIRT1/RORalpha/NF-kappaB signaling pathways. Int Immunopharmacol. 2021;96: 107779. https://doi.org/10.1016/j.intimp.2021.107779.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia JA, Volt H, Venegas C, Doerrier C, Escames G, Lopez LC, Acuna-Castroviejo D. Disruption of the NF-kappaB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-alpha and blocks the septic response in mice. FASEB J. 2015;29:3863–75. https://doi.org/10.1096/fj.15-273656.

    Article  CAS  PubMed  Google Scholar 

  56. Ding S, Lin N, Sheng X, Zhao Y, Su Y, Xu L, Tong R, Yan Y, Fu Y, He J, et al. Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORalpha-dependent manner. J Pineal Res. 2019;67: e12581. https://doi.org/10.1111/jpi.12581.

    Article  CAS  PubMed  Google Scholar 

  57. Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez N, Rodriguez-Rodriguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14:8638–83. https://doi.org/10.3390/ijms14048638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res. 2007;43:365–71. https://doi.org/10.1111/j.1600-079X.2007.00487.x.

    Article  CAS  PubMed  Google Scholar 

  59. Won E, Na KS, Kim YK. Associations between melatonin, neuroinflammation, and brain alterations in depression. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms23010305.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine. 2005;27:189–200. https://doi.org/10.1385/ENDO:27:2:189.

    Article  CAS  PubMed  Google Scholar 

  61. Kaur C, Ling EA. Effects of melatonin on macrophages/microglia in postnatal rat brain. J Pineal Res. 1999;26:158–68. https://doi.org/10.1111/j.1600-079x.1999.tb00578.x.

    Article  CAS  PubMed  Google Scholar 

  62. Arias J, Melean E, Valero N, Pons H, Chacin-Bonilla L, Larreal Y. Bonilla E [Effect of melatonin on lymphocyte proliferation and production of interleukin-2 (IL-2) and interleukin-1 beta (IL-1 beta) in mice splenocytes]. Invest Clin. 2003;44:41–50.

    PubMed  Google Scholar 

  63. Wichmann MW, Zellweger R, DeMaso, Ayala A, Chaudry IH. Melatonin administration attenuates depressed immune functions trauma-hemorrhage. J Surg Res. 1996;63:256–62. https://doi.org/10.1006/jsre.1996.0257.

    Article  CAS  PubMed  Google Scholar 

  64. Cao Z, Fang Y, Lu Y, Tan D, Du C, Li Y, Ma Q, Yu J, Chen M, Zhou C, et al. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res. 2017. https://doi.org/10.1111/jpi.12389.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Laliena A, San Miguel B, Crespo I, Alvarez M, Gonzalez-Gallego J, Tunon MJ. Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J Pineal Res. 2012;53:270–8. https://doi.org/10.1111/j.1600-079X.2012.00995.x.

    Article  CAS  PubMed  Google Scholar 

  66. Negi G, Kumar A, Sharma SS. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J Pineal Res. 2011;50:124–31. https://doi.org/10.1111/j.1600-079X.2010.00821.x.

    Article  CAS  PubMed  Google Scholar 

  67. Agil A, Reiter RJ, Jimenez-Aranda A, Iban-Arias R, Navarro-Alarcon M, Marchal JA, Adem A, Fernandez-Vazquez G. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res. 2013;54:381–8. https://doi.org/10.1111/jpi.12012.

    Article  CAS  PubMed  Google Scholar 

  68. Lin XJ, Mei GP, Liu J, Li YL, Zuo D, Liu SJ, Zhao TB, Lin MT. Therapeutic effects of melatonin on heatstroke-induced multiple organ dysfunction syndrome in rats. J Pineal Res. 2011;50:436–44. https://doi.org/10.1111/j.1600-079X.2011.00863.x.

    Article  CAS  PubMed  Google Scholar 

  69. Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C. Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1beta. J Pineal Res. 2019;67: e12598. https://doi.org/10.1111/jpi.12598.

    Article  CAS  PubMed  Google Scholar 

  70. Farre-Alins V, Narros-Fernandez P, Palomino-Antolin A, Decouty-Perez C, Lopez-Rodriguez AB, Parada E, Munoz-Montero A, Gomez-Rangel V, Lopez-Munoz F, Ramos E, et al. Melatonin reduces NLRP3 inflammasome activation by increasing alpha7 nAChR-mediated autophagic Flux. Antioxidants (Basel, Switzerland). 2020. https://doi.org/10.3390/antiox9121299.

    Article  PubMed  Google Scholar 

  71. Wen L, Wang M, Luo P, Meng X, Zhao M. Melatonin exerts cardioprotective effects by inhibiting NLRP3 inflammasome-induced pyroptosis in mice following myocardial infarction. Oxid Med Cell Longev. 2021;2021:5387799. https://doi.org/10.1155/2021/5387799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu J, Xu LW, Zeng ZF, Xue CQ, Li JL, Chen X, Zhou PY, Lin SY, Liao YH, Du XJ, et al. Normothermic ex vivo heart perfusion combined with melatonin enhances myocardial protection in rat donation after circulatory death hearts via inhibiting NLRP3 inflammasome-mediated pyroptosis. Front Cell Dev Biol. 2021;9:13. https://doi.org/10.3389/fcell.2021.733183.

    Article  Google Scholar 

  73. Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S, Sun C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-kappaB/GSDMD signal in mice adipose tissue. J Pineal Res. 2017. https://doi.org/10.1111/jpi.12414.

    Article  PubMed  Google Scholar 

  74. Liu JY, Sun QL, Sun MQ, Lin LS, Ren XK, Li TY, Xu Q, Sun ZW, Duan JC. Melatonin alleviates PM2.5-triggered macrophage M1 polarization and atherosclerosis via regulating NOX2-mediated oxidative stress homeostasis. Free Radic Biol Med. 2022;181:166–79. https://doi.org/10.1016/j.freeradbiomed.2022.02.005.

    Article  CAS  PubMed  Google Scholar 

  75. Liu S, Kang W, Mao X, Ge L, Du H, Li J, Hou L, Liu D, Yin Y, Liu Y, et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res. 2022;73: e12812. https://doi.org/10.1111/jpi.12812.

    Article  CAS  PubMed  Google Scholar 

  76. Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules. 2020. https://doi.org/10.3390/biom10091211.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther. 2017;23:33–44. https://doi.org/10.1111/cns.12588.

    Article  CAS  PubMed  Google Scholar 

  78. Xu C, Wang J, Fan Z, Zhang S, Qiao R, Liu Y, Yang J, Yang L, Wang H. Cardioprotective effects of melatonin against myocardial ischaemia/reperfusion injury: activation of AMPK/Nrf2 pathway. J Cell Mol Med. 2021. https://doi.org/10.1111/jcmm.16691.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brazao V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, et al. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol. 2022;167: 111895. https://doi.org/10.1016/j.exger.2022.111895.

    Article  CAS  PubMed  Google Scholar 

  80. Ghareghani M, Scavo L, Jand Y, Farhadi N, Sadeghi H, Ghanbari A, Mondello S, Arnoult D, Gharaghani S, Zibara K. Melatonin therapy modulates cerebral metabolism and enhances remyelination by increasing PDK4 in a mouse model of multiple sclerosis. Front Pharmacol. 2019;10:147. https://doi.org/10.3389/fphar.2019.00147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu ZJ, Ran YY, Qie SY, Gong WJ, Gao FH, Ding ZT, Xi JN. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther. 2019;25:1353–62. https://doi.org/10.1111/cns.13261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang Y, Liu Z, Zhang W, Wu Q, Zhang Y, Liu Y, Guan Y, Chen X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J Neurosci Res. 2019;97:733–43. https://doi.org/10.1002/jnr.24409.

    Article  CAS  PubMed  Google Scholar 

  83. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, et al. Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res. 2019;66: e12547. https://doi.org/10.1111/jpi.12547.

    Article  CAS  PubMed  Google Scholar 

  84. Song Z, Humar B, Gupta A, Maurizio E, Borgeaud N, Graf R, Clavien PA, Tian Y. Exogenous melatonin protects small-for-size liver grafts by promoting monocyte infiltration and releases interleukin-6. J Pineal Res. 2018;65: e12486. https://doi.org/10.1111/jpi.12486.

    Article  CAS  PubMed  Google Scholar 

  85. Shafer LL, McNulty JA, Young MR. Assessment of melatonin’s ability to regulate cytokine production by macrophage and microglia cell types. J Neuroimmunol. 2001;120:84–93. https://doi.org/10.1016/s0165-5728(01)00419-2.

    Article  CAS  PubMed  Google Scholar 

  86. Fernandez A, Ordonez R, Reiter RJ, Gonzalez-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59:292–307. https://doi.org/10.1111/jpi.12264.

    Article  CAS  PubMed  Google Scholar 

  87. Kim NH, Kang PM. Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J. 2010;40:299–305. https://doi.org/10.4070/kcj.2010.40.7.299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qian W, Wang Z, Xu T, Li D. Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury. Histol Histopathol. 2019;34:223–31. https://doi.org/10.14670/HH-18-048.

    Article  CAS  PubMed  Google Scholar 

  89. Bae S, Yalamarti B, Kang PM. Role of caspase-independent apoptosis in cardiovascular diseases. Front Biosci. 2008;13:2495–503. https://doi.org/10.2741/2861.

    Article  CAS  PubMed  Google Scholar 

  90. Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34:286–97.

    CAS  PubMed  Google Scholar 

  91. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57:131–46. https://doi.org/10.1111/jpi.12162.

    Article  CAS  PubMed  Google Scholar 

  92. Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: an updated review. Life Sci. 2019;228:228–41. https://doi.org/10.1016/j.lfs.2019.05.009.

    Article  CAS  PubMed  Google Scholar 

  93. Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol (Oxf). 2012;205:209–23. https://doi.org/10.1111/j.1748-1716.2012.02410.x.

    Article  CAS  PubMed  Google Scholar 

  94. Veiga ECA, Simoes RDS, Caviola LL, Abreu LC, Cavalli RC, Cipolla-Neto J, Baracat EC, Soares Junior JM. Melatonin and the cardiovascular system in animals: systematic review and meta-analysis. Clinics (Sao Paulo). 2021;76: e2863. https://doi.org/10.6061/clinics/2021/e2863.

    Article  PubMed  Google Scholar 

  95. Sewerynek E. Melatonin and the cardiovascular system. Neuro Endocrinol Lett. 2002;23(Suppl 1):79–83.

    CAS  PubMed  Google Scholar 

  96. Reitz CJ, Martino TA. Disruption of circadian rhythms and sleep on critical illness and the impact on cardiovascular events. Curr Pharm Des. 2015;21:3505–11. https://doi.org/10.2174/1381612821666150706105926.

    Article  CAS  PubMed  Google Scholar 

  97. Genade S, Genis A, Ytrehus K, Huisamen B, Lochner A. Melatonin receptor-mediated protection against myocardial ischaemia/reperfusion injury: role of its anti-adrenergic actions. J Pineal Res. 2008;45:449–58. https://doi.org/10.1111/j.1600-079X.2008.00615.x.

    Article  CAS  PubMed  Google Scholar 

  98. Lochner A, Huisamen B, Nduhirabandi F. Cardioprotective effect of melatonin against ischaemia/reperfusion damage. Front Biosci (Elite Ed). 2013;5:305–15. https://doi.org/10.2741/e617.

    Article  PubMed  Google Scholar 

  99. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother. 2006;60:97–108. https://doi.org/10.1016/j.biopha.2006.01.002.

    Article  CAS  PubMed  Google Scholar 

  100. Fernandez Rico C, Konate K, Josse E, Nargeot J, Barrere-Lemaire S, Boisguerin P. Therapeutic peptides to treat myocardial ischemia-reperfusion injury. Front Cardiovasc Med. 2022;9: 792885. https://doi.org/10.3389/fcvm.2022.792885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rabinovich-Nikitin I, Kirshenbaum LA. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med. 2022. https://doi.org/10.1016/j.tcm.2022.09.003.

    Article  PubMed  Google Scholar 

  102. Bermudez-Gonzalez JL, Sanchez-Quintero D, Proano-Bernal L, Santana-Apreza R, Jimenez-Chavarria MA, Luna-Alvarez-Amezquita JA, Straface JI, Perez-Partida AM, Berarducci J, Armenta-Moreno JI, et al. Role of the antioxidant activity of melatonin in myocardial ischemia-reperfusion injury. Antioxidants (Basel, Switzerland). 2022. https://doi.org/10.3390/antiox11040627.

    Article  PubMed  Google Scholar 

  103. Inserte J, Garcia-Dorado D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol. 2015;172:1996–2009. https://doi.org/10.1111/bph.12959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang J, Hu X, Jiang H. The Nrf-2/ARE-HO-1 axis: an important therapeutic approach for attenuating myocardial ischemia and reperfusion injury-induced cardiac remodeling. Int J Cardiol. 2015;184:263–4. https://doi.org/10.1016/j.ijcard.2015.02.073.

    Article  PubMed  Google Scholar 

  105. Yu L, Li S, Tang X, Li Z, Zhang J, Xue X, Han J, Liu Y, Zhang Y, Zhang Y, et al. Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis. 2017;22:942–54. https://doi.org/10.1007/s10495-017-1378-y.

    Article  CAS  PubMed  Google Scholar 

  106. Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, et al. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta. 2018;1864:563–78. https://doi.org/10.1016/j.bbadis.2017.11.023.

    Article  CAS  Google Scholar 

  107. Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.116.005328.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ma XL, Wang SC, Cheng H, Ouyang HC, Ma XN. Melatonin attenuates ischemia/reperfusion-induced oxidative stress by activating mitochondrial fusion in cardiomyocytes. Oxid Med Cell Longev. 2022;2022:8. https://doi.org/10.1155/2022/7105181.

    Article  Google Scholar 

  109. Wang YL, Jian Y, Zhang XF, Ni B, Wang MW, Pan CQ. Melatonin protects H9c2 cardiomyoblasts from oxygen-glucose deprivation and reperfusion-induced injury by inhibiting Rac1/JNK/Foxo3a/Bim signaling pathway. Cell Biol Int. 2022;46:415–26. https://doi.org/10.1002/cbin.11739.

    Article  CAS  PubMed  Google Scholar 

  110. Singhanat K, Apaijai N, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Melatonin as a therapy in cardiac ischemia-reperfusion injury: potential mechanisms by which MT2 activation mediates cardioprotection. J Adv Res. 2021;29:33–44. https://doi.org/10.1016/j.jare.2020.09.007.

    Article  CAS  PubMed  Google Scholar 

  111. Singhanat K, Apaijai N, Sumneang N, Maneechote C, Arunsak B, Chunchai T, Chattipakorn SC, Chattipakorn N. Therapeutic potential of a single-dose melatonin in the attenuation of cardiac ischemia/reperfusion injury in prediabetic obese rats. Cell Mol Life Sci. 2022;79:18. https://doi.org/10.1007/s00018-022-04330-1.

    Article  CAS  Google Scholar 

  112. Bai Y, Yang YL, Cui BQ, Lin DM, Wang ZQ, Ma J. Temporal effect of melatonin posttreatment on anoxia/reoxygenation injury in H9c2 cells. Cell Biol Int. 2022;46:637–48. https://doi.org/10.1002/cbin.11759.

    Article  CAS  PubMed  Google Scholar 

  113. Dwaich KH, Al-Amran FG, Al-Sheibani BI, Al-Aubaidy HA. Melatonin effects on myocardial ischemia-reperfusion injury: impact on the outcome in patients undergoing coronary artery bypass grafting surgery. Int J Cardiol. 2016;221:977–86. https://doi.org/10.1016/j.ijcard.2016.07.108.

    Article  PubMed  Google Scholar 

  114. Barati S, Jahangirifard A, Ahmadi ZH, Tavakoli-Ardakani M, Dastan F. The effects of melatonin on the oxidative stress and duration of atrial fibrillation after coronary artery bypass graft surgery: a randomized controlled trial. Endocr Metab Immune Disord Drug Targets. 2021;21:1142–9. https://doi.org/10.2174/1871530320666200728152307.

    Article  CAS  PubMed  Google Scholar 

  115. Nasseh N, Khezri MB, Farzam S, Shiravandi S, Shafikhani AA. The effect of melatonin on cardiac biomarkers after coronary artery bypass graft surgery: a double-blind, randomized pilot study. J Cardiothorac Vasc Anesth. 2022;36:3800–5. https://doi.org/10.1053/j.jvca.2022.06.003.

    Article  CAS  PubMed  Google Scholar 

  116. Hajhossein-Talasaz A, Dianatkhah M, Ghaeli P, Salehiomran A, Dianatkhah M. Possible effects of melatonin on reperfusion injury following coronary artery bypass graft surgery. ARYA Atheroscler. 2022;18:1–7. https://doi.org/10.48305/arya.v18i0.2208.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ma WY, Song RJ, Xu BB, Xu Y, Wang XX, Sun HY, Li SN, Liu SZ, Yu MX, Yang F, et al. Melatonin promotes cardiomyocyte proliferation and heart repair in mice with myocardial infarction via miR-143-3p/Yap/Ctnnd1 signaling pathway. Acta Pharmacol Sin. 2021;42:921–31. https://doi.org/10.1038/s41401-020-0495-2.

    Article  CAS  PubMed  Google Scholar 

  118. Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899–911. https://doi.org/10.1172/JCI88759.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tsvetkova AS, Bernikova OG, Mikhaleva NJ, Khramova DS, Ovechkin AO, Demidova MM, Platonov PG, Azarov JE. Melatonin prevents early but not delayed ventricular fibrillation in the experimental porcine model of acute ischemia. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010328.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiao L, Wang Y, Zhang S, Wang Y, Liu Z, Liu Z, Zhou Y, Zhou H, Xu X, Li Z, et al. Melatonin improves cardiac remodeling and brain-heart sympathetic hyperactivation aggravated by light disruption after myocardial infarction. J Pineal Res. 2022;73: e12829. https://doi.org/10.1111/jpi.12829.

    Article  CAS  PubMed  Google Scholar 

  121. Ma Q, Yang J, Huang X, Guo W, Li S, Zhou H, Li J, Cao F, Chen Y. Poly(Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells. 2018;36:540–50. https://doi.org/10.1002/stem.2777.

    Article  CAS  PubMed  Google Scholar 

  122. Dominguez-Rodriguez A, Abreu-Gonzalez P, de la Torre-Hernandez JM, Gonzalez-Gonzalez J, Garcia-Camarero T, Consuegra-Sanchez L, Garcia-Saiz MD, Aldea-Perona A, Virgos-Aller T, Azpeitia A, et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: results of the Melatonin Adjunct in the acute myocaRdial Infarction treated with Angioplasty trial. J Pineal Res. 2017. https://doi.org/10.1111/jpi.12374.

    Article  PubMed  Google Scholar 

  123. Dominguez-Rodriguez A, Abreu-Gonzalez P, de la Torre-Hernandez JM, Consuegra-Sanchez L, Piccolo R, Gonzalez-Gonzalez J, Garcia-Camarero T, Del Mar G-S, Aldea-Perona A, Reiter RJ, et al. Usefulness of early treatment with melatonin to reduce infarct size in patients with ST-segment elevation myocardial infarction receiving percutaneous coronary intervention (from the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial). Am J Cardiol. 2017;120:522–6. https://doi.org/10.1016/j.amjcard.2017.05.018.

    Article  CAS  PubMed  Google Scholar 

  124. Ekeloef S, Halladin N, Fonnes S, Jensen SE, Zaremba T, Rosenberg J, Jonsson G, Aaroe J, Gasbjerg LS, Rosenkilde MM, et al. Effect of intracoronary and intravenous melatonin on myocardial salvage index in patients with ST-elevation myocardial infarction: a randomized placebo controlled trial. J Cardiovasc Transl Res. 2017;10:470–9. https://doi.org/10.1007/s12265-017-9768-7.

    Article  PubMed  Google Scholar 

  125. Nduhirabandi F, Maarman GJ. Melatonin in heart failure: a promising therapeutic strategy? Molecules. 2018. https://doi.org/10.3390/molecules23071819.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hoseini SG, Heshmat-Ghahdarijani K, Khosrawi S, Garakyaraghi M, Shafie D, Mansourian M, Roohafza H, Azizi E, Sadeghi M. Melatonin supplementation improves N-terminal pro-B-type natriuretic peptide levels and quality of life in patients with heart failure with reduced ejection fraction: results from MeHR trial, a randomized clinical trial. Clin Cardiol. 2022;45:417–26. https://doi.org/10.1002/clc.23796.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Paulis L, Simko F. Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind. Physiol Res. 2007;56:671–84. https://doi.org/10.33549/physiolres.931236.

    Article  CAS  PubMed  Google Scholar 

  128. Girotti L, Lago M, Ianovsky O, Elizari MV, Dini A, Perez Lloret S, Albornoz LE, Cardinali DP. Low urinary 6-sulfatoxymelatonin levels in patients with severe congestive heart failure. Endocrine. 2003;22:245–8. https://doi.org/10.1385/ENDO:22:3:245.

    Article  CAS  PubMed  Google Scholar 

  129. Dominguez-Rodriguez A, Abreu-Gonzalez P, Arroyo-Ucar E, Reiter RJ. Decreased level of melatonin in serum predicts left ventricular remodelling after acute myocardial infarction. J Pineal Res. 2012;53:319–23. https://doi.org/10.1111/j.1600-079X.2012.01001.x.

    Article  CAS  PubMed  Google Scholar 

  130. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ. The potential usefulness of serum melatonin level to predict heart failure in patients with hypertensive cardiomyopathy. Int J Cardiol. 2014;174:415–7. https://doi.org/10.1016/j.ijcard.2014.04.044.

    Article  PubMed  Google Scholar 

  131. Sadeghi M, Khosrawi S, Heshmat-Ghahdarijani K, Gheisari Y, Roohafza H, Mansoorian M, Hoseini SG. Effect of melatonin on heart failure: design for a double-blinded randomized clinical trial. ESC Heart Fail. 2020;7:3142–50. https://doi.org/10.1002/ehf2.12829.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hoseini SG, Heshmat-Ghahdarijani K, Khosrawi S, Garakyaraghi M, Shafie D, Roohafza H, Mansourian M, Azizi E, Gheisari Y, Sadeghi M. Effect of melatonin supplementation on endothelial function in heart failure with reduced ejection fraction: a randomized, double-blinded clinical trial. Clin Cardiol. 2021;44:1263–71. https://doi.org/10.1002/clc.23682.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol. 2015;401:213–20. https://doi.org/10.1016/j.mce.2014.12.013.

    Article  CAS  PubMed  Google Scholar 

  134. Xu CN, Kong LH, Ding P, Liu Y, Fan ZG, Gao EH, Yang J, Yang LF. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta. 2020;1866: 165848. https://doi.org/10.1016/j.bbadis.2020.165848.

    Article  CAS  Google Scholar 

  135. Tang H, Zhong H, Liu W, Wang Y, Wang Y, Wang L, Tang S, Zhu H. Melatonin alleviates hyperglycemia-induced cardiomyocyte apoptosis via regulation of long non-coding RNA H19/miR-29c/MAPK axis in diabetic cardiomyopathy. Pharmaceuticals (Basel). 2022. https://doi.org/10.3390/ph15070821.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Crnko S, Printezi MI, Zwetsloot PM, Leiteris L, Lumley AI, Zhang L, Ernens I, Jansen TPJ, Homsma L, Feyen D, et al. The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine. 2023;91: 104556. https://doi.org/10.1016/j.ebiom.2023.104556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cao Y, Bojjireddy N, Kim M, Li T, Zhai P, Nagarajan N, Sadoshima J, Palmiter RD, Tian R. Activation of gamma2-AMPK suppresses ribosome biogenesis and protects against myocardial ischemia/reperfusion injury. Circ Res. 2017;121:1182–91. https://doi.org/10.1161/CIRCRESAHA.117.311159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tang X, Chen XF, Wang NY, Wang XM, Liang ST, Zheng W, Lu YB, Zhao X, Hao DL, Zhang ZQ, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017;136:2051–67. https://doi.org/10.1161/CIRCULATIONAHA.117.028728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://doi.org/10.1016/j.arr.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  140. Di S, Wang Z, Hu W, Yan X, Ma Z, Li X, Li W, Gao J. The protective effects of melatonin against LPS-induced septic myocardial injury: a potential role of AMPK-mediated autophagy. Front Endocrinol (Lausanne). 2020;11:162. https://doi.org/10.3389/fendo.2020.00162.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Di W, Jin Z, Lei W, Liu Q, Yang W, Zhang S, Lu C, Xu X, Yang Y, Zhao H. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cell Mol Biol Lett. 2023;28:35. https://doi.org/10.1186/s11658-022-00415-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chirinos JA, Sardana M, Oldland G, Ansari B, Lee J, Hussain A, Mustafa A, Akers SR, Wei W, Lakatta EG, et al. Association of arginine vasopressin with low atrial natriuretic peptide levels, left ventricular remodelling, and outcomes in adults with and without heart failure. ESC Heart Fail. 2018;5:911–9. https://doi.org/10.1002/ehf2.12319.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen S, Li Y, Fu S, Li Y, Wang C, Sun P, Li H, Tian J, Du GQ. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol. 2022;206: 115265. https://doi.org/10.1016/j.bcp.2022.115265.

    Article  CAS  PubMed  Google Scholar 

  144. Yin B, Ye T, Liu X, Wan R, Gu L, Zong G. Effects of melatonin for delirium in elderly acute heart failure patients: a randomized, single-center, double-blind, and placebo-controlled trial. Heart Surg Forum. 2022;25:E037–41. https://doi.org/10.1532/hsf.4325.

    Article  PubMed  Google Scholar 

  145. Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid Med Cell Longev. 2019;2019:8563845. https://doi.org/10.1155/2019/8563845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, oxidative stress, senescence in atherosclerosis: thioredoxine-1 as an emerging therapeutic target. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms23010077.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ajoolabady A, Bi Y, McClements DJ, Lip GYH, Richardson DR, Reiter RJ, Klionsky DJ, Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res. 2022;176: 106072. https://doi.org/10.1016/j.phrs.2022.106072.

    Article  CAS  PubMed  Google Scholar 

  148. Li H, Li J, Jiang X, Liu S, Liu Y, Chen W, Yang J, Zhang C, Zhang W. Melatonin enhances atherosclerotic plaque stability by inducing prolyl-4-hydroxylase alpha1 expression. J Hypertens. 2019;37:964–71. https://doi.org/10.1097/HJH.0000000000001979.

    Article  CAS  PubMed  Google Scholar 

  149. Hu ZP, Fang XL, Fang N, Wang XB, Qian HY, Cao Z, Cheng Y, Wang BN, Wang Y. Melatonin ameliorates vascular endothelial dysfunction, inflammation, and atherosclerosis by suppressing the TLR4/NF-kappaB system in high-fat-fed rabbits. J Pineal Res. 2013;55:388–98. https://doi.org/10.1111/jpi.12085.

    Article  CAS  PubMed  Google Scholar 

  150. Wang Z, Gao Z, Zheng Y, Kou J, Song D, Yu X, Dong B, Chen T, Yang Y, Gao X, et al. Melatonin inhibits atherosclerosis progression via galectin-3 downregulation to enhance autophagy and inhibit inflammation. J Pineal Res. 2023;74: e12855. https://doi.org/10.1111/jpi.12855.

    Article  CAS  PubMed  Google Scholar 

  151. Zhao ZW, Wang XB, Zhang R, Ma BT, Niu S, Di X, Ni L, Liu CW. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging-Us. 2021;13:11363–80. https://doi.org/10.18632/aging.202829.

    Article  CAS  Google Scholar 

  152. Xie YH, Lou DF, Zhang DM. Melatonin alleviates age-associated endothelial injury of atherosclerosis via regulating telomere function. J Inflamm Res. 2021;14:6799–812. https://doi.org/10.2147/jir.S329020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sezgin D, Aslan G, Sahin K, Tuzcu M, Ilhan N, Sahna E. The effects of melatonin against atherosclerosis-induced endothelial dysfunction and inflammation in hypercholesterolemic rats. Arch Physiol Biochem. 2023;129:476–83. https://doi.org/10.1080/13813455.2020.1838550.

    Article  CAS  PubMed  Google Scholar 

  154. Hong NJ, Ye ZR, Lin YJ, Liu WS, Xu N, Wang Y. Agomelatine prevents angiotensin II induced endothelial and mononuclear cell adhesion. Aging-Us. 2021;13:18515–26.

    Article  CAS  Google Scholar 

  155. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of hypertension: the mosaic theory and beyond. Circ Res. 2021;128:847–63. https://doi.org/10.1161/CIRCRESAHA.121.318082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee EK, Poon P, Yu CP, Lee VW, Chung VC, Wong SY. Controlled-release oral melatonin supplementation for hypertension and nocturnal hypertension: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2022;24:529–35. https://doi.org/10.1111/jch.14482.

    Article  PubMed  Google Scholar 

  157. Simko F, Baka T, Krajcirovicova K, Repova K, Aziriova S, Zorad S, Poglitsch M, Adamcova M, Reiter RJ, Paulis L. Effect of melatonin on the renin-angiotensin-aldosterone system in l-NAME-induced hypertension. Molecules. 2018. https://doi.org/10.3390/molecules23020265.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wu D, Zhao D, Huang D, Sun X, Li KX, Feng Y, Yan QX, Li XY, Cui CP, Li HD, et al. Estrogen-dependent depressor response of melatonin via baroreflex afferent function and intensification of PKC-mediated Na(v)1.9 activation. Acta Pharmacol Sin. 2022;43:2313–24. https://doi.org/10.1038/s41401-022-00867-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhou T, Chang L, Luo Y, Zhou Y, Zhang J. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol. 2019;21: 101120. https://doi.org/10.1016/j.redox.2019.101120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang L, Wang W, Han R, Liu Y, Wu B, Luo J. Protective effects of melatonin on myocardial microvascular endothelial cell injury under hypertensive state by regulating Mst1. BMC Cardiovasc Disord. 2023;23:179. https://doi.org/10.1186/s12872-023-03159-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sun Y, Wang CC, Zhang N, Liu F. Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca2+-activated K+ channels in uterine arteries. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00675-5.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bazyar H, Javid AZ, Behbahani HB, Moradi F, Poode BM, Amiri P. Consumption of melatonin supplement improves cardiovascular disease risk factors and anthropometric indices in type 2 diabetes mellitus patients: a double-blind, randomized, placebo-controlled trial. Trials. 2021;22:10. https://doi.org/10.1186/s13063-021-05174-z.

    Article  CAS  Google Scholar 

  163. Balarastaghi S, Barangi S, Hosseinzadeh H, Imenshahidi M, Moosavi Z, Razavi BM, Karimi G. Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother. 2022;151:12. https://doi.org/10.1016/j.biopha.2022.113135.

    Article  CAS  Google Scholar 

  164. Borghi C, Cicero AF. Nutraceuticals with a clinically detectable blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. Br J Clin Pharmacol. 2017;83:163–71. https://doi.org/10.1111/bcp.12902.

    Article  CAS  PubMed  Google Scholar 

  165. Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential hypertension and oxidative stress: novel future perspectives. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232214489.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, Wallace EM. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res. 2018;65: e12508. https://doi.org/10.1111/jpi.12508.

    Article  CAS  PubMed  Google Scholar 

  167. Rahbari-Oskoui FF, Abramson JL, Bruckman AM, Chapman AB, Cotsonis GA, Johnson SA, Bliwise DL. Nighttime administration of high-dose, sustained-release melatonin does not decrease nocturnal blood pressure in African-American patients: results from a preliminary randomized, crossover trial. Complement Ther Med. 2019;43:157–64. https://doi.org/10.1016/j.ctim.2019.01.026.

    Article  CAS  PubMed  Google Scholar 

  168. Brittain EL, Thenappan T, Huston JH, Agrawal V, Lai YC, Dixon D, Ryan JJ, Lewis EF, Redfield MM, Shah SJ, et al. Elucidating the clinical implications and pathophysiology of pulmonary hypertension in heart failure with preserved ejection fraction: a call to action: a science advisory from the American Heart Association. Circulation. 2022;146:e73–88. https://doi.org/10.1161/CIR.0000000000001079.

    Article  PubMed  PubMed Central  Google Scholar 

  169. MacLean MR. Melatonin: shining some light on pulmonary hypertension. Cardiovasc Res. 2020;116:2036–7. https://doi.org/10.1093/cvr/cvaa173.

    Article  CAS  PubMed  Google Scholar 

  170. Das R, Balonan L, Ballard HJ, Ho S. Chronic hypoxia inhibits the antihypertensive effect of melatonin on pulmonary artery. Int J Cardiol. 2008;126:340–5. https://doi.org/10.1016/j.ijcard.2007.04.030.

    Article  PubMed  Google Scholar 

  171. Maarman G, Blackhurst D, Thienemann F, Blauwet L, Butrous G, Davies N, Sliwa K, Lecour S. Melatonin as a preventive and curative therapy against pulmonary hypertension. J Pineal Res. 2015;59:343–53. https://doi.org/10.1111/jpi.12263.

    Article  CAS  PubMed  Google Scholar 

  172. Chen S, Sun P, Li Y, Shen W, Wang C, Zhao P, Cui H, Xue JY, Du GQ. Melatonin activates the Mst1-Nrf2 signaling to alleviate cardiac hypertrophy in pulmonary arterial hypertension. Eur J Pharmacol. 2022;933: 175262. https://doi.org/10.1016/j.ejphar.2022.175262.

    Article  CAS  PubMed  Google Scholar 

  173. Hung MW, Yeung HM, Lau CF, Poon AMS, Tipoe GL, Fung ML. Melatonin attenuates pulmonary hypertension in chronically hypoxic rats. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18061125.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin reduces oxidative stress in the right ventricle of newborn sheep gestated under chronic hypoxia. Antioxidants (Basel, Switzerland). 2021. https://doi.org/10.3390/antiox10111658.

    Article  PubMed  Google Scholar 

  175. Figueroa EG, Gonzalez-Candia A, Villanueva CA, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Beneficial effects of melatonin on prostanoids pathways in pulmonary hypertensive neonates. Vascul Pharmacol. 2021;138: 106853. https://doi.org/10.1016/j.vph.2021.106853.

    Article  CAS  PubMed  Google Scholar 

  176. Wang R, Zhou S, Wu P, Li M, Ding X, Sun L, Xu X, Zhou X, Zhou L, Cao C, et al. Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. Mol Ther Nucleic Acids. 2018;13:44–54. https://doi.org/10.1016/j.omtn.2018.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang J, Lu X, Liu M, Fan H, Zheng H, Zhang S, Rahman N, Wolczynski S, Kretowski A, Li X. Melatonin inhibits inflammasome-associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension. Cardiovasc Res. 2020;116:2156–69. https://doi.org/10.1093/cvr/cvz312.

    Article  CAS  PubMed  Google Scholar 

  178. Wang R, Pan J, Han J, Gong M, Liu L, Zhang Y, Liu Y, Wang D, Tang Q, Wu N, et al. Melatonin attenuates dasatinib-aggravated hypoxic pulmonary hypertension via inhibiting pulmonary vascular remodeling. Front Cardiovasc Med. 2022;9: 790921. https://doi.org/10.3389/fcvm.2022.790921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cai Z, Klein T, Geenen LW, Tu L, Tian S, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, Duncker DJ, et al. Lower plasma melatonin levels predict worse long-term survival in pulmonary arterial hypertension. J Clin Med. 2020. https://doi.org/10.3390/jcm9051248.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21082685.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 2018;193:20–33. https://doi.org/10.1016/j.lfs.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  182. Zhang ZJ, Lin JL, Tian NF, Wu YS, Zhou YF, Wang CG, Wang QQ, Jin HM, Chen TT, Nisar M, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med. 2019;23:177–93. https://doi.org/10.1111/jcmm.13903.

    Article  CAS  PubMed  Google Scholar 

  183. Chen WR, Zhou YJ, Yang JQ, Liu F, Zhao YX, Sha Y. Melatonin attenuates β-glycerophosphate-induced calcification of vascular smooth muscle cells via a Wnt1/β-catenin signaling pathway. Biomed Res Int. 2019;2019:3139496. https://doi.org/10.1155/2019/3139496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen WR, Yang JQ, Liu F, Shen XQ, Zhou YJ. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp Cell Res. 2020;389: 111883. https://doi.org/10.1016/j.yexcr.2020.111883.

    Article  CAS  PubMed  Google Scholar 

  185. Chen WR, Zhou YJ, Sha Y, Wu XP, Yang JQ, Liu F. Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway. J Cell Mol Med. 2020;24:6043–54. https://doi.org/10.1111/jcmm.15157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang Y, Han D, Zhou T, Zhang J, Liu C, Cao F, Dong N. Melatonin ameliorates aortic valve calcification via the regulation of circular RNA CircRIC3/miR-204-5p/DPP4 signaling in valvular interstitial cells. J Pineal Res. 2020;69: e12666. https://doi.org/10.1111/jpi.12666.

    Article  CAS  PubMed  Google Scholar 

  187. Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Cui RR, Wu F, et al. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res. 2020;68: e12631. https://doi.org/10.1111/jpi.12631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Nocturnal polysomnographic sleep across the menstrual cycle in premenstrual dysphoric disorder. Sleep Med. 2012;13:1071–8. https://doi.org/10.1016/j.sleep.2012.05.012.

    Article  PubMed  Google Scholar 

  189. Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002. https://doi.org/10.1002/14651858.CD001520.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Thonusin C, Nawara W, Arinno A, Khuanjing T, Prathumsup N, Ongnok B, Chattipakorn SC, Chattipakorn N. Effects of melatonin on cardiac metabolic reprogramming in doxorubicin-induced heart failure rats: A metabolomics study for potential therapeutic targets. J Pineal Res. 2023;75(1):e12884. https://doi.org/10.1111/jpi.12884.

    Article  CAS  PubMed  Google Scholar 

  191. Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Cui RR, Wu F, Zhou E, Liao XB, Liu YS, Yuan LQ. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res. 2020;68(3):e12631. https://doi.org/10.1111/jpi.12631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Lu.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China [Nos. 81600210, 82270503 to WW Lu], the Science and Technology Bureau of Suzhou (SKY2022110), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of Interest

Pengchen Gu, Yuxin Wu, and Weiwei Lu declare that they have no potential conflicts of interest that might be relevant to the contents of this article.

Authors' Contributions

WL conceived of the article. PG and YW performed the literature search, wrote the original draft, and created the figures and tables contained in the work. WL aided in drafting the work and providing critical revisions.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed for this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Wu, Y. & Lu, W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 24, 171–195 (2024). https://doi.org/10.1007/s40256-024-00631-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-024-00631-x

Navigation