Skip to main content
Log in

Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabtree G., Kócs E., Trahey L., Materials Research Society, 2015, 40, 1067

    Article  CAS  Google Scholar 

  2. Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy & Environmental Science, 2011, 4, 12

    Article  CAS  Google Scholar 

  3. Wei L., Zhao S. X., Wu X., Zhao S. J., Nan C. W., Journal of Materiomics, 2018, 4, 179

    Article  Google Scholar 

  4. Lei P., Liu K., Wan X., Luo D., Xiang X., Chemical Communications, 2019, 55, 509

    Article  CAS  PubMed  Google Scholar 

  5. Hwang J. Y., Myung S. T., Sun Y. K., Chemical Society Reviews, 2017, 46, 3529

    Article  CAS  PubMed  Google Scholar 

  6. Lee W., Muhammad S., Sergey C., Lee H., Yoon J., Kang Y. M., Yoon W. S., Angewandte Chemie International Edition, 2020, 59, 2578

    Article  CAS  PubMed  Google Scholar 

  7. Zheng X., Liu W., Qu Q., Zheng H., Huang Y., Journal of Materiomics, 2019, 5, 156

    Article  Google Scholar 

  8. Zhao J., Zhang X., Wang J., Yang X., Deng J., Wang Y., Journal of Solid State Electrochemistry, 2020, 24, 1349

    Article  CAS  Google Scholar 

  9. Ma P., Kang W., Wang Y., Cao D., Fan L., Sun D., Applied Surface Science, 2020, 5, 29

    Article  CAS  Google Scholar 

  10. Zhao L. N., Zhang T., Zhao H. L., Hou Y. L., Materials Today Nano, 2020, 10, 439

    Article  Google Scholar 

  11. Lu Y., Wang L., Cheng J., Goodenough J. B., Chemical Communications, 2012, 48, 6544

    Article  CAS  PubMed  Google Scholar 

  12. Jiang W., Qi W., Pan Q., Jia Q., Yang C., Cao B., International Journal of Hydrogen Energy, 2021, 46, 4252

    Article  CAS  Google Scholar 

  13. Zhao Y., Fu Q., Wang D., Pang Q., Gao Y., Missiul A., Nemausat R., Sarapulova A., Ehrenberg H., Wei Y., Chen G., Energy Storage Materials, 2019, 18, 51

    Article  CAS  Google Scholar 

  14. Chen M., Liu Q., Wang S. W., Wang E., Guo X., Chou S. L., Advanced Energy Materials, 2019, 9, 14

    Google Scholar 

  15. Lei Y.-J., Yan Z.-C., Lai W.-H., Chou S.-L., Wang Y.-X., Liu H.-K., Dou S.-X., Electrochemical Energy Reviews, 2020, 3, 766

    Article  CAS  Google Scholar 

  16. Yabuuchi N., Kajiyama M., Iwatate J., Nishikawa H., Hitomi S., Okuyama R., Usui R., Yamada Y., Komaba S., Nature Materials, 2012, 11, 512

    Article  CAS  PubMed  Google Scholar 

  17. Li M., Wood D. L., Bai Y., Essehli R., Amin M. R., Jafta C., Muralidharan N., Li J., Belharouak I., ACS Appllied Materials Interfaces, 2020, 12, 23951

    Article  CAS  Google Scholar 

  18. Sun W., Tang X., Wang Y., Electrochemical Energy Reviews, 2019, 3, 127

    Article  CAS  Google Scholar 

  19. Yi T. F., Li Y., Fang Z., Cui P., Luo S., Xie Y., Journal of Materiomics, 2020, 6, 33

    Article  Google Scholar 

  20. Fu J., Huang H., Shi K., Chen F., Yang Z., Zhang W., Electrochimica Acta, 2020, 3, 49

    Google Scholar 

  21. Chen T., Liu W., Zhuo Y., Hu H., Zhu M., Cai R., Chen X., Yan J., Liu K., Journal of Energy Chemistry, 2020, 43, 148

    Article  Google Scholar 

  22. Han M. H., Gonzalo E., Sharma N., del Amo J. M. L., Armand M., Avdeev M., Garitaonandia J. J. S., Rojo T., Chemistry of Materials, 2015, 28, 106

    Article  CAS  Google Scholar 

  23. Wang H., Gao R., Li Z., Sun L., Hu Z., Liu X., Inorganic Chemistry, 2018, 57, 5249

    Article  CAS  PubMed  Google Scholar 

  24. Chu S., Chen Y., Wang J., Dai J., Liao K., Zhou W., Shao Z., Composites Part B, 2019, 77, 383

    Google Scholar 

  25. Kong W., Wang H., Zhai Y., Sun L., Liu X., Journal of Physical Chemistry C, 2018, 122, 25909

    Article  CAS  Google Scholar 

  26. Kong W., Wang H., Sun L., Su C., Liu X., Applied Surface Science, 2019, 4, 97

    Google Scholar 

  27. Joshua J. R., Lee Y. S., Maiyalagan T., Nallamuthu N., Yuvraj P., Sivakumar N., Journal of Electroanalytical Chemistry, 2020, 8, 56

    Google Scholar 

  28. Yu Y., Kong W., Li Q., Ning D., Schuck G., Schumacher G., Su C., Liu X., ACS Applied Energy Materials, 2020, 3, 933

    Article  CAS  Google Scholar 

  29. Sun H. H., Hwang J. Y., Yoon C. S., Heller A., Mullins C. B., ACS Nano, 2018, 12, 12912

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y., Pei Y., Liu W., Zhang S., Xie J., Xia J., Nie S., Liu L., Wang X., Chemical Engineering Journal, 2020, 3, 82

    Google Scholar 

  31. Aragón M. J., Lavela P., Ortiz G., Alcántara R., Tirado J. L., Journal of Alloys and Compounds, 2017, 724, 465

    Article  CAS  Google Scholar 

  32. Kalluri S., Seng K. H., Pang W. K., Guo Z., Chen Z., Liu H. K., Dou S. X., ACS Applied Materials & Interfaces, 2014, 68, 953

    Google Scholar 

  33. Kalluri S., Yoon M., Jo M., Park S., Myeong S., Kim J., Dou S. X., Guo Z., Cho J., Advanced Energy Materials, 2017, 7, 245

    Google Scholar 

  34. Idris M. S., Osman R. A. M., Advanced Materials Research, 2013, 795, 479

    Article  CAS  Google Scholar 

  35. Wang F., Zhang Y., Zou J., Liu W., Chen Y., Journal of Alloys and Compounds, 2013, 55, 8172

    Google Scholar 

  36. Guignard M., Didier C., Darriet J., Bordet P., Elkaim E., Delmas C., Nature Materials, 2013, 12, 74

    Article  CAS  PubMed  Google Scholar 

  37. Zhao D., Clites M., Ying G., Kota S., Wang J., Natu V., Wang X., Pomerantseva E., Cao M., Barsoum M. W., Chemical Communications, 2018, 54, 4533

    Article  CAS  PubMed  Google Scholar 

  38. Berthelot R., Carlier D., Delmas C., Nature Materials, 2011, 10, 74

    Article  CAS  PubMed  Google Scholar 

  39. Zheng L., Li J., Obrovac M. N., Chemistry of Materials, 2017, 29, 1623

    Article  CAS  Google Scholar 

  40. Dang R., Li Q., Chen M., Hu Z., Xiao X., Physical Chemistry Chemical Physics, 2018, 21, 314

    Article  PubMed  Google Scholar 

  41. Mo Y., Ong S. P., Ceder G., Chemistry of Materials, 2014, 26, 5208

    Article  CAS  Google Scholar 

  42. Lan T., Wei W., Xiao S., He G., Hong J., Journal of Materials Science: Materials in Electronics, 2020, 31, 9423

    CAS  Google Scholar 

  43. Li B., Wang J., Cao Z., Zhang P., Zhao J., Journal of Power Sources, 2016, 325, 84

    Article  CAS  Google Scholar 

  44. Zhang X., Xu G., Hu J., Lv J., Wang J., Wu Y., Royal Society of Chemistry Advances, 2016, 6, 63241

    CAS  Google Scholar 

  45. Zhao Y., Sun Y., Yue Y., Hu X., Xia M., Electrochimica Acta, 2014, 130, 66

    Article  CAS  Google Scholar 

  46. Feng X. Y., Shen C., Fang X., Chen C. H., Journal of Alloys and Compounds, 2011, 50, 3623

    Article  CAS  Google Scholar 

  47. Luo Z. M., Sun Y. G., Liu H. Y., Chinese Chemical Letters, 2015, 26, 1403

    Article  CAS  Google Scholar 

  48. Wu X., Wang S., Lin X., Zhong G., Gong Z., Yang Y., Journal of Materials Chemistry A, 2014, 2, 1006

    Article  CAS  Google Scholar 

  49. Hu G. R., Cao J. C., Peng Z. D., Cao Y. B., Du K., Electrochimica Acta, 2014, 149, 49

    Article  CAS  Google Scholar 

  50. Chu S., Wei S., Chen Y., Cai R., Liao K., Zhou W., Shao Z., Ceramics International, 2018, 44, 5184

    Article  CAS  Google Scholar 

  51. Li Z. Y., Zhang J., Gao R., Zhang H., Hu Z., Liu X., ACS Appllied Materias Interfaces, 2016, 8, 15439

    Article  CAS  Google Scholar 

  52. Bai Y., Zhao L., Wu C., Li H., Li Y., Wu F., ACS Appllied Materrials Interfaces, 2016, 8, 2857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21676067), the Natural Science Foundation of Anhui Province, China(No. 1908085QE178) and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfa Xiang or Yan Yu.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2021_1287_MOESM1_ESM.pdf

Enhanced electrochemical performance of Na0.67Fe0.5Mn0.5O2 cathode for sodium ion battery by the combination strategy of Sn4+ doping and SnO2 coating

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Liu, Y., Ma, J. et al. Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification. Chem. Res. Chin. Univ. 37, 1130–1136 (2021). https://doi.org/10.1007/s40242-021-1287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1287-z

Keywords

Navigation