Skip to main content

Advertisement

Log in

P2-type Na0.59Co0.20Mn0.77Mo0.03O2 cathode with excellent cycle stability for sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Layered P2-type Mn-based material is considered as one of the most promising cathode materials for sodium-ion batteries, but its unsatisfactory cyclic performance is one of the problems that need to be overcome. Here, we used molybdenum doping strategy to synthesize P2-type Na0.59Co0.20Mn0.77Mo0.03O2 material with a hexagonal layer structure as the cathode of sodium-ion batteries through a solid-state reaction route. The maximum discharge capacity of the Mo-doped cathode is 131.9 mAh g−1 with the capacity retention rate of 91.51% after 100 cycles at 0.1 C (1 C = 156 mAh g−1). Optimized Mo doping effectively decreases the charge transfer resistance and the interface resistance of the Na0.59Co0.20Mn0.80O2 cathode at open circuit and after 100 cycles, respectively, and the growth trends of the charge transfer resistance and the interface resistance are obviously slowed down, which is proved that the cycling stability of the pristine cathode is significantly improved by Mo doping. The main reasons are as follows: (1) Mo doping expands the a-axis and shortens the TM–O bond, which enhances the structural stability of the P2-type oxide; (2) Mo doping increases the crystallinity of the pristine and decreases the degree of cation disorder in the P2-type oxide; (3) the bond energy of Mo–O is stronger than that of Mn–O and Co–O, resulting in a more stable structure of the material. The results provide a meaningful reference for improving the cycle stability and kinetic performance of P2-type cathode materials for sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Hu GR, Peng ZD, Cao YB, Lai XW, Qi XY, Gan ZG, Li W, Luo ZY, Du K (2018) Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries. J Power Sources 396:639–647

    Article  CAS  Google Scholar 

  2. Lv TJ, Guan L, Xiao P, Zhang DY, Chang CK (2019) Improved electrochemical performance of P2-type Na0.67Lix(Mn0.5Fe0.25Co0.25)1-xO2 cathode materials from Li ion substitution of the transition metal ions. J Mater Sci 54:5584–5594

    Article  CAS  Google Scholar 

  3. Chu SY, Wei SY, Chen YB, Cai R, Liao KM, Zhou W, Shao ZP (2018) Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceram Int 44:5184–5192

    Article  CAS  Google Scholar 

  4. Bao S, Luo SH, Wang ZY, Yan SX, Wang Q, Li JY (2018) Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J Power Sources 396:404–411

    Article  CAS  Google Scholar 

  5. Wang Y, Wang XY, Li XL, Yu RZ, Chen MF, Tang K, Zhang XH (2019) The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by nonmetallic elements for high performance sodium-ion batteries. Chem Eng J 360:139–147

    Article  CAS  Google Scholar 

  6. Pang WL, Guo JZ, Zhang XH, Fan CY, Nie XJ, Yu HY, Li WH, Yang Q, Wu XL (2019) P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: electrochemical properties and electrode kinetics. J Alloys Compd 790:1092–1100

    Article  CAS  Google Scholar 

  7. Sehrawat D, Cheong S, Rawal A, Glushenkov AM, Brand HEA, Cowie B, Gonzalo E, Rojo T, Naeyaert PJP, Ling CD, Avdeev M, Sharma N (2019) Investigation of K modified P2 Na0.7Mn0.8Mg0.2O2 as a cathode material for sodium-ion batteries. CrystEngComm 21:172–181

    Article  CAS  Google Scholar 

  8. Wang YQ, Zhao FY, Qian YM, Ji HB (2018) High-performance P2-Na0.70Mn0.80Co0.15Zr0.05O2 cathode for sodium-ion batteries. ACS Appl Mater Interfaces 10:42380–42386

    Article  CAS  PubMed  Google Scholar 

  9. Lee SY, Kim JH, Kang YC (2017) Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries. Electrochim Acta 225:86–92

    Article  CAS  Google Scholar 

  10. Xie H, Wang CD, Tao S, Wu GX, Zhou Y, Wu CQ, Wang XB, Sang Y, Song L, Zhang GB, Pan GQ, Marcelli A, Chu WH, Wei SQ (2018) Ball-in-ball hierarchical design of P2-type layered oxide as high performance Na-ion battery cathodes. Electrochim Acta 265:284–291

    Article  CAS  Google Scholar 

  11. Jiang KZ, Zhang XP, Li HY, Zhang XY, He P, Guo SH, Zhou HS (2019) Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 11:14848–14853

    Article  CAS  PubMed  Google Scholar 

  12. Kang SM, Park JH, Jin AH, Jung YH, Mun JY, Sung YE (2018) Na+/vacancy disordered P2-Na0.67Co1–xTixO2: high-energy and high-power cathode materials for sodium ion batteries. ACS Appl Mater Interfaces 10:3562–3570

    Article  CAS  PubMed  Google Scholar 

  13. Doubaji S, Ma L, Asfaw HD, Izanzar I, Xu R, Alami J, Lu J, Wu TP, Amine K, Edström K, Saadoune I (2018) On the P2-NaxCo1–y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl Mater Interfaces 10:488–501

    Article  CAS  PubMed  Google Scholar 

  14. Li JK, Wang J, He X, Zhang L, Senyshyn A, Yan B, Muehlbauer M, Cao X, Westhoven BV, Kraft V, Liu HD, Luerenbaum C, Schumacher G, Paillard E, Winter M, Li J (2019) P2-type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: insights of the synergetic effects of multi-metal substitution and electrolyte optimization. J Power Sources 416:184–192

    Article  CAS  Google Scholar 

  15. Konarov A, Jo JH, Choi JU, Bakenov Z, Yashiro H, Kima J, Myung ST (2019) Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy 59:197–206

    Article  CAS  Google Scholar 

  16. Ruiz NT, Dose WM, Sharma N, Chen H, Heath J, Somerville JW, Maitra U, Islam MS, Bruce PG (2018) High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3–xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies. Energy Environ Sci 11:1470–1479

    Article  Google Scholar 

  17. Yu TY, Hwang JY, Aurbach D, Sun YK (2017) A microsphere Na0.65[Ni0.17Co0.11Mn0.72]O2 cathode material for high performance sodium-ion batteries. ACS Appl Mater Interfaces 9:44534–44541

    Article  CAS  PubMed  Google Scholar 

  18. Bao S, Luo SH, Wang ZY, Yan SX, Wang Q (2019) Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. J Colloid Interface Sci 544:164–171

    Article  CAS  PubMed  Google Scholar 

  19. Shen YB, Birgisson S, Iversen BB (2016) A P2-NaxCo0.7Mn0.3O2 (x≈1.0) cathode material for Na-ion batteries with superior rate and cycle capability. J Mater Chem A 4:12281–12288

    Article  CAS  Google Scholar 

  20. Wang QC, Hu EY, Pan Y, Xiao N, Hong F, Fu ZW, Wu XJ, Bak SM, Yang XQ, Zhou YN (2017) Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries. Adv Sci 4:1700219

    Article  CAS  Google Scholar 

  21. Chu SY, Chen YB, Wang J, Dai J, Liao KM, Zhou W, Shao ZP (2019) A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. J Alloys Compd 775:383–392

    Article  CAS  Google Scholar 

  22. Liu WF, Chen T, Li JY, Bian XY, Zhuo Y, Hu H, Guo J, Liu KY, Yan J (2019) Investigation on the effect of Cu substitution on structure and Na-ion kinetics of layered P2-Na0.44Mn0.6Ni0.4O2 cathode material. Solid State Ionics 329:149–154

    Article  CAS  Google Scholar 

  23. Wen YF, Fan JJ, Shi CG, Dai P, Hong YH, Wang RX, Wu LN, Zhou ZY, Li JT, Huang L, Sun SG (2019) Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-type layered composite for sodium-ion batteries. Nano Energy 60:162–170

    Article  CAS  Google Scholar 

  24. Zang Y, Ding CX, Wang XC, Wen ZY, Chen CH (2015) Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance. Electrochim Acta 168:234–239

    Article  CAS  Google Scholar 

  25. Yuan XL, Xu QJ, Liu XN, Shen W, Liu HM, Xia YY (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129

    Article  CAS  Google Scholar 

  26. Sun JL, Shen JX, Wang TL (2017) Electrochemical study of Na0.66Ni0.33Mn0.67–xMoxO2 as cathode material for sodium-ion battery. J Alloys Compd 709:481–486

    Article  CAS  Google Scholar 

  27. Park JK, Park GG, Kwak HH, Hong ST, Lee JW (2018) Enhanced rate capability and cycle performance of titanium-substituted P2-type Na0.67Fe0.5Mn0.5O2 as a cathode for sodium-ion batteries. ACS Omega 3(1):361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sohn DR, Lim SJ, Nam DH, Hong KS, Kim TH, Oh SK, Eom JY, Cho EA, Kwon HS (2018) Fabrication of Na0.7MnO2/C composite cathode material by simple heat treatment for high-power Na-ion batteries. Electron Mater Lett 14:30–36

    Article  CAS  Google Scholar 

  29. Hong JH, Wang MY, Du YY, Deng L, He G (2019) The role of Zn substitution in P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential. J Mater Sci-Mater El 30:4006–4013

    Article  CAS  Google Scholar 

  30. Zhang Y, Wang ZB, Yu FD, Que LF, Wang MJ, Xia YF, Xue Y, Wu J (2017) Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery. J Power Sources 358:1–12

    Article  CAS  Google Scholar 

  31. Wang LQ, Jiao LF, Yuan HT, Guo J, Zhao M, Li HX, Wang YM (2006) Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery. J Power Sources 162:1367–1372

    Article  CAS  Google Scholar 

  32. Lecce DD, Campanella D, Hassoun J (2018) Insight on the enhanced reversibility of a multimetal layered oxide for sodium-ion battery. J Phys Chem C 122:23925–23933

    Article  CAS  Google Scholar 

  33. Xue LL, Li YJ, Xu B, Chen YX, Cao GL, Li JG, Deng SY, Chen YJ, Chen J (2018) Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage. J Alloys Compd 748:561–568

    Article  CAS  Google Scholar 

  34. Park JH, Lim J, Yoon J, Park KS, Gim J, Song JJ, Park H, Im D, Park M, Ahn D, Paike Y, Kim J (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2·0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton T 41:3053–3059

    Article  CAS  Google Scholar 

  35. Lu Y, Shi SL, Yang F, Zhan TY, Niu HY, Wang T (2018) Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. J Alloys Compd 767:23–33

    Article  CAS  Google Scholar 

  36. Wang D, Li XH, Wang ZX, Guo HJ, Xu Y, Fan YL, Ru JJ (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56

    Article  CAS  Google Scholar 

  37. Yao HR, Yin YX, Guo YG (2016) Size effects in lithium ion batteries. Chin Phys B 25:018203

    Article  CAS  Google Scholar 

  38. Zhang ZK, Meng Y, Wang YJ, Yuan HY, Xiao D (2018) Obtaining P2-Na0.56[Ni0.1Co0.1Mn0.8]O2 cathode materials with high performances by a co-precipitation method for sodium-ion batteries. ChemElectroChem 5:3229–3235

    Article  CAS  Google Scholar 

  39. Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources 356:80–88

    Article  CAS  Google Scholar 

  40. Breuer O, Chakraborty A, Liu J, Kravchuk T, Burstein L, Grinblat J, Kauffman Y, Gladkih A, Nayak P, Tsubery M, Frenkel AI, Talianker M, Major DT, Markovsky B, Aurbach D (2018) Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl Mater Interfaces 10:29608–29621

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Wu ZG, Zheng Z, Chen TR, Guo XD, Li JT, Zhong BH (2018) Tuning the component ratio and corresponding sodium storage properties of layer-tunnel hybrid Na0.6Mn1–xNixO2 cathode by a simple cationic Ni2+ doping strategy. Electrochim Acta 273:63–70

    Article  CAS  Google Scholar 

  42. Jugović D, Milović M, Popović M, Kusigerski V, Škapin S, Rakočević Z, Mitrić M (2019) Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. J Alloys Compd 774:30–37

    Article  CAS  Google Scholar 

  43. Tiwari B, Bhattacharya I (2018) Layered P2-type novel Na0.7Ni0.3Mn0.59Co0.1Cu0.01O2 cathode material for high-capacity & stable rechargeable sodium-ion battery. Electrochim Acta 270:363–368

    Article  CAS  Google Scholar 

  44. Li ZY, Gao R, Sun LM, Hu ZB, Liu XF (2017) Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium-ion batteries. Electrochim Acta 223:92–99

    Article  CAS  Google Scholar 

  45. Daniel B, Christoph V, Luciana GC, Stefano P (2015) Mg-doping for improved long-term cyclability of layered Na-ion cathode materials−the example of P2-type NaxMg0.11Mn0.89O2. J Power Sources 282:581–585

    Article  CAS  Google Scholar 

  46. Zhang JL, Yu DYW (2018) Stabilizing Na0.7MnO2 cathode for Na-ion battery via a single-step surface coating and doping process. J Power Sources 391:106–112

    Article  CAS  Google Scholar 

  47. Song XN, Zhou XF, Deng YM, Nan JM, Shu D, Cai ZD, Huang YH, Zhang XH (2018) Synthesis of NaxMn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode materials for sodium-ion batteries. J Alloys Compd 732:88–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Yanzhi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, X., Wang, J. et al. P2-type Na0.59Co0.20Mn0.77Mo0.03O2 cathode with excellent cycle stability for sodium-ion batteries. J Solid State Electrochem 24, 1349–1361 (2020). https://doi.org/10.1007/s10008-020-04547-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04547-9

Keywords

Navigation