Skip to main content

Advertisement

Log in

Enhanced electrochemical properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 by SnO2 coating under high cutoff voltage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Extending the working voltage is an effective approach to enhance the reversible capacity of LiNi1-x-yCoxMnyO2 layered oxide cathode materials. However, the layered Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode suffers a severe structural instability and rapid capacity decrease during high-voltage cycling (4.6 V). In order to solve these problems, the surface coating layer of SnO2 is successfully prepared via a one-step synthesis way followed with a high temperature calcination method. The 1.0% SnO2-modified LiNi0.8Co0.1Mn0.1O2 delivers a much higher capacity retention (83.63%) compared with pristine sample (71.58%) after 100 cycles at 1 C under 4.6 V. The coating properties of SnO2-coated LiNi0.8Co0.1Mn0.1O2 are probed via X-ray diffraction, scanning electron microscope, and transmission electron microscope. Our results provide a skillful approach to obtain the promising high performance of cathode materials with both high energy density and long calendar life to satisfy the growing demands of future lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater:e1800561

  2. Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J (2014) Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54:4440–4458

    Article  Google Scholar 

  3. Sun Y, Chen Z, Noh H, Lee D, Jung H, Ren Y, Wang S, Yoon C, Myung S, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947

    Article  CAS  Google Scholar 

  4. Li Y, Zhang H, Xiao Z, Wang R (2019) Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/carbon nanotubes/nanofibrillated celluloses composite electrode for high-performance lithium-ion battery. Front Chem 7:555

    Article  CAS  Google Scholar 

  5. Li W, Liu X, Celio H (2018) Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv Energy Mater 8(15):1703154

    Article  Google Scholar 

  6. Xiao Z, Wang R, Li Y, Sun Y, Fan S, Xiong K, Zhang H, Qian Z (2019) Electrochemical analysis for enhancing interface layer of spinel LiNi0.5Mn1.5O4 using p-toluenesulfonyl isocyanate as electrolyte additive. Front Chem 7:591

    Article  CAS  Google Scholar 

  7. Xie Y, Gao H, Gim J, Ngo A, Ma Z, Chen Z (2019) Identifying active sites for parasitic reactions at the cathode-electrolyte interface. J Phys Chem Lett 10(3):589–594

    Article  Google Scholar 

  8. Wang J, Yamada Y, Sodeyama K, Chiang C, Tateyama Y, Yamada A (2016) Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun 7:12032

    Article  CAS  Google Scholar 

  9. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140

    Article  CAS  Google Scholar 

  10. Wang R, Wang Z, Li X, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer. Electrochim Acta 241:208–219

    Article  CAS  Google Scholar 

  11. Yan P, Zheng J, Zhang J (2017) Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett 17(6):3946–3951

    Article  CAS  Google Scholar 

  12. Zheng J, Yang Z, Dai A, Tang L, Wei H, Li Y, He Z, Lu J (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design. Small:e1904854

  13. Yan P, Zheng J, Gu M, Xiao J, Zhang J, Wang C (2017) Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun 8(1):14101

    Article  CAS  Google Scholar 

  14. Yang H, Wu H, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng X, Lee W, Zhang Q, Lu J (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 29(13):1808825

    Article  Google Scholar 

  15. Li Y, Liu J, Lei Y, Lai C, Xu Q (2017) Enhanced electrochemical performances of Na-doped cathode material LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. J Mater Sci 52(23):13596–13605

    Article  CAS  Google Scholar 

  16. Lei Y, Ai J, Yang S, Lai C, Xu Q (2019) Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: effect on the cycling stability and voltage decay at high rates. J Taiwan Inst Chem Eng 97:255–263

    Article  CAS  Google Scholar 

  17. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56

    Article  CAS  Google Scholar 

  18. Zheng J, Yang Z, He Z, Tong H, Yu W, Zhang J (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621

    Article  CAS  Google Scholar 

  19. Gan Z, Hu G, Peng Z, Cao Y, Tong H, Du K (2019) Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl Surf Sci 481:1228–1238

    Article  CAS  Google Scholar 

  20. Ahn J, Jang E, Yoon S, Lee S, Sung S, Kim D, Cho K (2019) Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries. Appl Surf Sci 484(1):701–709

    Article  CAS  Google Scholar 

  21. Lei Y, Li Y, Jiang H, Lai C (2018) Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J Mater Sci 54(5):4202–4211

    Article  Google Scholar 

  22. Dong M, Wang Z, Li H, Guo H, Li X, Shih K, Wang J (2017) Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain Chem Eng 5(11):10199–10205

    Article  CAS  Google Scholar 

  23. Wu L, Tang X, Rong Z, Chen X, Huang J, Chen T, Fang X, Wang Y, Dang W (2019) Studies on electrochemical reversibility of lithium tungstate coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material under high cut-off voltage cycling. Appl Surf Sci 484:21–32

    Article  CAS  Google Scholar 

  24. Wang W, Yin Z, Wang J, Wang Z, Li X, Guo H (2015) Effect of heat-treatment on Li2ZrO3 -coated LiNi1/3Co1/3Mn1/3O2 and its high voltage electrochemical performance. J Alloys Compd 651:737–743

    Article  CAS  Google Scholar 

  25. Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd 674:447–454

    Article  CAS  Google Scholar 

  26. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sources 343:345–353

    Article  CAS  Google Scholar 

  27. Chen Z, Liu Y, Lu Z, Hu R, Cui J, Xu H, Ouyang Y, Zhang Y, Zhu M (2019) Plasma-assisted coating of nanosized SnO2 on LiNi0.5Co0.2Mn0.3O2 cathodes for enhanced cyclic stability of lithium-ion batteries. J Alloys Compd 803:71–79

    Article  CAS  Google Scholar 

  28. Ma F, Geng F, Yuan A, Xu J (2017) Facile synthesis and characterization of a SnO2-modified LiNi0.5Mn1.5O4 high-voltage cathode material with superior electrochemical performance for lithium ion batteries. Phys Chem Chem Phys 19(15):9983–9991

    Article  CAS  Google Scholar 

  29. Luo Z, Sun Y, Liu H (2015) Electrochemical performance of a nano SnO2-modified LiNi1/3Co- 1/3Mn1/3O2 cathode material. Chin Chem Lett 26(11):1403–1408

    Article  CAS  Google Scholar 

  30. Hudaya C, Park J, Lee J, Choi W (2014) SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries. Solid State Ionics 256:89–92

    Article  CAS  Google Scholar 

  31. Li B, Wang J, Cao Z, Zhang P, Zhao J (2016) The role of SnO2 surface coating in the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 cathode materials. J Power Sources 325:84–90

    Article  CAS  Google Scholar 

  32. Tang W, Chen Z, Xiong F, Chen F, Huang C, Gao Q, Wang T, Yang Z, Zhang W (2019) An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J Power Sources 412:246–254

    Article  CAS  Google Scholar 

  33. Xiong F, Chen Z, Huang C, Wang T, Zhang W, Yang Z, Chen F (2019) Near-equilibrium control of Li2TiO3 nanoscale layer coated on LiNi0.8Co0.1Mn0.1O2 cathode materials for enhanced electrochemical performance. Inorg Chem 58(22):15498–15506

    Article  CAS  Google Scholar 

  34. Liao J, Manthiram A (2015) Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. J Power Sources 282:429–436

    Article  CAS  Google Scholar 

  35. Fu J, Mu D, Wu B, Bi J, Cui H, Yang H, Wu H, Wu F (2018) Electrochemical properties of the LiNi0.6Co0.2Mn0.2O2 cathode material modified by lithium tungstate under high voltage. ACS Appl Mater Interfaces 10(23):19704–19711

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 21501015, 51604042, 31527803, and 21545010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Xiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Li, A., Xiao, Z. et al. Enhanced electrochemical properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 by SnO2 coating under high cutoff voltage. Ionics 26, 2681–2688 (2020). https://doi.org/10.1007/s11581-019-03430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03430-6

Keywords

Navigation