Skip to main content
Log in

Characterization on Modification and Biocompatibility of PCL Scaffold Prepared with Near-field Direct-writing Melt Electrospinning

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this study, orthogonal experiments were designed to explore the optimal process parameters for preparing polycaprolactone(PCL) scaffolds by the near-field direct-writing melt electrospinning(NFDWMES) technology. Based on the optimal process parameters, the PCL scaffolds with different thicknesses, gaps and structures were manufactured and the corresponding hydrophilicities were characterized. The PCL scaffolds were modified by chitosan (CS) and hyaluronic acid(HA) to improve biocompatibility and hydrophilicity. Both Fourier transform infrared spectroscopy(FTIR) analysis and antibacterial experimental results show that the chitosan and hyaluronic acid adhere to the surface of PCL scaffolds, suggesting that the modification plays a positive role in biocompatibility and antibacterial effect. The PCL scaffolds were then employed as a carrier to culture cells. The morphology and distribution of the cells observed by a fluorescence microscope demonstrate that the modified PCL scaffolds have good biocompatibility, and the porous structure of the scaffolds is conducive to adhesion and deep growth of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R., Vacanti J. P., Science, 1993, 260, 920

    Article  CAS  Google Scholar 

  2. Vacanti J. P., Langer R., Lancet, 1999, 354, 32

    Article  Google Scholar 

  3. Jiang T., Carbone E. J., Lo K. W. H., Laurencin C. T., Prog. Polym. Sci., 2015, 46, 1

    Article  Google Scholar 

  4. Naahidi S., Jafari M., Logan M., Wang Y., Yuan Y., Bae H., Dixon B., Chen P., Biotechnol Adv., 2017, 35, 530

    Article  CAS  Google Scholar 

  5. Sangkert S., Kamolmatyakul S., Gelinsky M., Meesane J., Mater. Today Commun., 2021, 26, 102140

    Article  CAS  Google Scholar 

  6. Izadyari A. A., Heidari K. S., Sefat F., AkbarzadehKhiyavi A., Mater. Sci. Eng., 2021, 120, 111752

    Article  Google Scholar 

  7. Hwang P., Murdock K., Alexander G. C., Salaam A. D., Ng J. I., Lim D., Dean D., Jun H., J. Biomed. Mater. Res., Part A, 2016, 104, 4

    Article  Google Scholar 

  8. Ma P. X., Zhang R., J. Biomed. Mater. Res., 1999, 46, 1

    Article  Google Scholar 

  9. Fang Y. C., Zhang T., Liverani L., Boccaccini A. R., Sun W., J. Biomed. Mater. Res., Part A, 2019, 107, 12

    Article  Google Scholar 

  10. Goyal R., Vega M. E., Pastino A. K., Singh S., Guvendiren M., Kohn J., Murthy N. S., Schwarzbauer J. E., J. Biomed. Mater. Res., Part A, 2017, 105, 8

    Article  Google Scholar 

  11. Teo W. E., He W., Ramakrishna S., Biotechnol. J., 2006, 1, 9

    Article  Google Scholar 

  12. Pham Q. P., Sharma U., Mikos A. G., Tissue Eng., 2006, 12, 1197

    Article  CAS  Google Scholar 

  13. Jiang T., Carbone E. J., Lo K. W., Laurencin C. T., Prog. Polym. Sci., 2015, 46, 1

    Article  Google Scholar 

  14. Fong H., Reneker D. H., J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 3488

    Article  CAS  Google Scholar 

  15. Reneker D. H., Yarin A. L., Fong H., Koombhongse S., J. Appl. Phys., 2000, 87, 4531

    Article  CAS  Google Scholar 

  16. Xue J. J., Xie J. W., Liu W. Y., Xia Y. N., Acc. Chem. Res., 2017, 50, 1976

    Article  CAS  Google Scholar 

  17. Bisht G. S., Canton G., Mirsepassi A., Kulinsky L., Oh S., Dunn-Rankin D., Madou M. J., Nano Lett., 2011, 11, 1831

    Article  CAS  Google Scholar 

  18. Nguyen N. T., Kim J. H., Jeong Y. H., Mater. Sci. Eng., C, 2019, 103, 109785

    Article  CAS  Google Scholar 

  19. Brown T. D., Dalton P. D., Hutmacher D. W., Adv. Mater., 2011, 23, 5651

    Article  CAS  Google Scholar 

  20. Wang X., Zheng G., Xu L., Appl. Phys. A, 2012, 108, 825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No.51973168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Liu.

Ethics declarations

The authors declare no conflicts of interest.

Electronic supplementary material

40242_2021_1129_MOESM1_ESM.pdf

Characterization on Modification and Biocompatibility of PCL Scaffold Prepared with Near-field Direct-writing Melt Electrospinning

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Hao, M., Qian, X. et al. Characterization on Modification and Biocompatibility of PCL Scaffold Prepared with Near-field Direct-writing Melt Electrospinning. Chem. Res. Chin. Univ. 37, 578–583 (2021). https://doi.org/10.1007/s40242-021-1129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1129-z

Keywords

Navigation