Skip to main content
Log in

Polycaprolactone-polymethyl methacrylate electrospun blends for biomedical applications

  • Polymer Blends
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Electrospinning is one of most versatile process to fabricate porous scaffolds in biomedical field. Synthetic polymers such as polycaprolactone (PCL) and polymethyl methacrylate (PMMA) provide excellent properties for biomedical applications due to their biocompatibility and tunable mechanical properties. PCL-PMMA electrospun blends combine compressive/tensile properties of individual polymers as well as biocompatibility/biodegradability. Together with porosity of scaffold, drug/nutrient supply is required in tissue regeneration and healing. High pressure CO2 has been investigated to plasticize many biopolymers and impregnate drugs in scaffolds. This study explores several compositions of PCL-PMMA electrospun scaffolds for morphological and mechanical properties. These scaffolds are impregnated with hydrophilic (Rhodamine B) and hydrophobic (Fluorescein) dyes using high pressure CO2 and air plasma treatment. Furthermore, release profiles of dyes have been studied from thin films and porous scaffolds to understand several controlling factors for controlled release applications. Results show dye-polymer interactions, CO2 impregnation and stress relaxation of electrospun fibers are key factors in release profile from electrospun fibers. This study is a step forward in developing PCL-PMMA based electrospun scaffolds for drug delivery and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, Int. J. Pharm. 415 (1), 34 (2011).

    Article  CAS  Google Scholar 

  2. L. Plapied, N. Duhem, A. des Rieux, and V. Préat, Curr. Opin. Colloid Interface Sci. 16 (3), 228 (2011).

  3. M. R. Prausnitz, P. M. Elias, T. J. Franz, M. Schmuth, J. C. Tsai, G. K. Menon, and K. R. Feingold, “Skin Barrier and Transdermal Drug Delivery,” in Dermatology, 3rd ed., Ed. by J. Bolognia, J. Jorizzo, and J. Schaffer (Elsevier Saunders, Philadelphia, PA, 2012), pp. 2065–2074.

    Google Scholar 

  4. H. Naderi, M. M. Matin, and A. R. Bahrami, J. Biomater. Appl. 26 (4), 383 (2011).

    Article  CAS  Google Scholar 

  5. L. S. Nair, and C. T. Laurencin, “Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery,” in Tissue Engineering I, Ed. by {K. Lee and D. Kaplan} (Springer, Berlin; Heidelberg, 2006), pp. 47–90.

    Google Scholar 

  6. R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, and S.Ramakrishna, Macromol. Biosci. 12 (3), 286 (2012).

    Article  CAS  Google Scholar 

  7. T. J. Sill and H. A. von Recum, Biomaterials 29 (13), 1989 (2008).

    Article  Google Scholar 

  8. M. Rønbeck, A. Behndig, M. Taube, A. Koivula, and M. Kugelberg, Acta Ophthalmol. 91 (1), 66 (2013).

    Article  Google Scholar 

  9. J. Krebs, S. J. Ferguson, B. G. Goss, E. Stauffer, L. Ettinger, and N. Aebli, J. Biomed. Mater. Res., Part B 100 (3), 660 (2012).

    Article  Google Scholar 

  10. Y. Liu, Y. Ji, K. Ghosh, R. A. Clark, L. Huang, and M. H. Rafailovich, J. Biomed. Mater. Res., Part A 90 (4), 1092 (2009).

    Article  Google Scholar 

  11. H. Becker and L. E. Locascio, Talanta 56 (2), 267 (2002).

    Article  CAS  Google Scholar 

  12. T. K. Dash and V. B. Konkimalla, J. Controlled Release 158 (1), 15 (2012).

    Article  CAS  Google Scholar 

  13. J. Gunn and M. Zhang, Trends Biotechnol. 28 (4), 189 (2010).

  14. A. Sionkowska, Prog. Polym. Sci. 36 (9), 1254 (2011).

    Article  CAS  Google Scholar 

  15. S. H. Hsu and W. C. Chen, Biomaterials 21 (4), 359 (2000).

    Article  CAS  Google Scholar 

  16. B. J. Park, H. J. Seo, J. Kim, H. L. Kim, J. K. Kim, J. B. Choi, I. Han, S. O. Hyun, K.-H. Chung, and J. C. Park, Surf. Coat. Technol. 205, S222–S226 (2010).

    Google Scholar 

  17. U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24 (24), 4385 (2003).

    Article  CAS  Google Scholar 

  18. R. Srikar, A. L. Yarin, C. M. Megaridis, A. V. Bazilevsky, and E. Kelley, Langmuir 24 (3), 965 (2008).

    Article  CAS  Google Scholar 

  19. S. Yoda, K. Sato, and H. T. Oyama, RSC Adv. 1 (1), 156 (2011).

  20. H. B. Hopfenberg, L. Nicolais, and E. Drioli, Polymer 17 (3), 195 (1976).

    Article  CAS  Google Scholar 

  21. R. G. Matthews, A. Ajji, M. M. Dumoulin, and R. E. Prud’homme, Polymer 41 (19), 7139 (2000).

    Article  CAS  Google Scholar 

  22. A. V. Tobolsky, J. Appl. Phys. 27(7), 673 (2004).

    Article  Google Scholar 

  23. L. N. Ludueña, V. A. Alvarez, and A. Vazquez, J. Mater. Sci. Eng. A 460, 121 (2007).

    Article  Google Scholar 

  24. H. Eslami, M. Kesik, H. A. Karimi-Varzaneh, and F. Müller-Plathe, J. Chem. Phys. 139 (12), 124902 (2013).

    Article  Google Scholar 

  25. P. L. Ritger and N. A. Peppas, J. Controlled Release 5 (1), 37 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrishikesh Ramesh Munj.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munj, H.R., Tomasko, D.L. Polycaprolactone-polymethyl methacrylate electrospun blends for biomedical applications. Polym. Sci. Ser. A 59, 695–707 (2017). https://doi.org/10.1134/S0965545X17050121

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17050121

Navigation