Skip to main content
Log in

Insight into the Dual Cycle Mechanism of Methanol-to-Olefins Reaction over SAPO-34 Molecular Sieve by Isotopic Tracer Studies

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Methanol-to-olefins(MTO) reaction is one of the important non-petroleum routes to produce light olefins over acidic molecular sieves. In this study, the complete reaction course of MTO on SAPO-34 molecular sieve with retained organics evolution from induction period to deactivation period was investigated systematically at different weight hourly space velocities(WHSV) of methanol. By the aid of 12C/13C-methanol isotopic switch experiment, the dual cycle mechanism involving aromatics-based cycle and alkenes-based cycle was evaluated during the whole reaction process. The detailed reaction route varied with the evolution of the retained organics in the catalyst at different reaction stages. The aromatics-based cycle and alkenes-based cycle alternately dominate the reaction process. In the efficient reaction period, aromatics-based cycle is the main reaction mechanism, while in the induction and deactivation periods, the contribution of alkenes-based cycle mechanism will become more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stöcker M., Microporous Mesoporous Mater., 1999, 29, 3

    Google Scholar 

  2. Olsbye U., Svelle S., Bjørgen M., Beato P., Janssens T. V. W., Joensen F., Bordiga S., Lillerud K. P., Angew. Chem. Int. Ed., 2012, 51, 5810

    CAS  Google Scholar 

  3. Tian P., Wei Y. X., Ye M., Liu Z. M., ACS Catal., 2015, 5, 1922

    CAS  Google Scholar 

  4. Yang M., Fan D., Wei Y. X., Tian P., Liu Z. M., Adv. Mater., 2019, 31, 1902181

    CAS  Google Scholar 

  5. Haw J. F., Song W. G., Marcus D. M., Nicholas J. B., Acc. Chem. Res., 2003, 36, 317

    CAS  PubMed  Google Scholar 

  6. Xu S. T., Zhi Y. C., Han J. F., Zhang W. N., Wu X. Q., Sun T. T., Wei Y. X., Liu Z. M., Adv. Catal., 2017, 61, 37

    CAS  Google Scholar 

  7. Yarulina I., Chowdhury A. D., Meirer F., Weckhuysen B. M., Gascon J., Nat. Catal., 2018, 1, 398

    CAS  Google Scholar 

  8. Chang C. D., Silestri A. J., J. Catal., 1977, 47, 249

    CAS  Google Scholar 

  9. Clarke J. K. A., Darcy R., Hegarty B. F., O’Donoghue E., Amir-Ebrahimi V., Rooney J. J., J. Chem. Soc., Chem. Commun., 1986, 5, 425

    Google Scholar 

  10. Marcus D. M., McLachlan K. A., Wildman M. A., Ehresmann J. O., Kletnieks P. W., Haw J. F., Angew. Chem. Int. Ed., 2006, 45, 3133

    CAS  Google Scholar 

  11. Lesthaeghe D., van Speybroeck V., Marin G. B., Waroquier M., Angew. Chem. Int. Ed., 2006, 45, 1714

    CAS  Google Scholar 

  12. Li J. F., Wei Z. H., Chen Y. Y., Jing B. Q., He Y., Dong M., Jiao H. J., Li X. K., Qin Z. F., Wang J. G., Fan W. B., J. Catal., 2014, 317, 277

    CAS  Google Scholar 

  13. Liu Y., Muller S., Berger D., Jelic J., Reuter K., Tonigold M., Sanchez-Sanchez M., Lercher J. A., Angew. Chem. Int. Ed., 2016, 55, 5723

    CAS  Google Scholar 

  14. Chowdhury A. D., Houben K., Whiting G. T., Mokhtar M., Asiri A. M., Al-Thabaiti S. A., Basahel S. N., Baldus M., Weckhuysen B. M., Angew. Chem. Int. Ed., 2016, 55, 15840

    CAS  Google Scholar 

  15. Wang C., Chu Y. Y., Xu J., Wang Q., Qi G. D., Gao P., Zhou X., Deng F., Angew. Chem. Int. Ed., 2018, 57, 10197

    CAS  Google Scholar 

  16. Qi L., Wei Y. X., Xu L., Liu Z. M., ACS Catal., 2015, 5, 3973

    CAS  Google Scholar 

  17. Wu X. Q., Xu S. T., Zhang W. N., Huang J. D., Li J. Z., Yu B. W., Wei Y. X., Liu Z. M., Angew. Chem. Int. Ed., 2017, 56, 9039

    CAS  Google Scholar 

  18. Wu X. Q., Xu S. T., Wei Y. X., Zhang W. N., Huang J. D., Xu S. L., He Y. L., Lin S. F., Sun T. T., Liu Z. M., ACS Catal., 2018, 8, 7356

    CAS  Google Scholar 

  19. Chen N. Y., Reagan W. J., J. Catal., 1979, 59, 123

    CAS  Google Scholar 

  20. Dessau R. M., Lapierre R. B., J. Catal., 1982, 78, 136

    CAS  Google Scholar 

  21. Dahl I. M., Kolboe S., J. Catal., 1994, 149, 458

    CAS  Google Scholar 

  22. Dahl I. M., Kolboe S., J. Catal., 1996, 161, 304

    CAS  Google Scholar 

  23. Xu T., Barich D. H., Goguen P. W., Song W. G., Wang Z. K., Nicholas J. B., Haw J. F., J. Am. Chem. Soc., 1998, 120, 4025

    CAS  Google Scholar 

  24. Lesthaeghe D., Horre A., Waroquier M., Marin G. B., Van Speybroeck V., Chem. Eur. J., 2009, 15, 10803

    CAS  PubMed  Google Scholar 

  25. Wang C., Yi X. F., Xu J., Qi G. D., Gao P., Wang W. Y., Chu Y. Y., Wang Q., Feng N. D., Liu X. L., Zheng A. M., Deng F., Chem. Eur. J., 2015, 21, 12061

    CAS  PubMed  Google Scholar 

  26. Xu S. T., Zheng A. M., Wei Y. X., Chen J.R., Li J. Z., Chu Y. Y., Zhang M. Z., Wang Q. Y., Zhou Y., Wang J. B., Deng F., Liu Z. M., Angew. Chem. Int. Ed., 2013, 52, 11564

    CAS  Google Scholar 

  27. Li J. Z., Wei Y. X., Chen J. R., Tian P., Su X., Xu S. T., Qi Y., Wang Q. Y., Zhou Y., He Y. L., Liu Z. M., J. Am. Chem. Soc., 2012, 134, 836

    CAS  PubMed  Google Scholar 

  28. Lesthaeghe D., van der Mynsbrugge J., Vandichel M., Waroquier M., van Speybroeck V., ChemCatChem, 2011, 3, 208

    CAS  Google Scholar 

  29. Arstad B., Nicholas J. B., Haw J. F., J. Am. Chem. Soc., 2004, 126, 2991

    CAS  PubMed  Google Scholar 

  30. Bjorgen M., Svelle S., Joensen F., Nerlov J., Kolboe S., Bonino F., Palumbo L., Bordiga S., Olsbye U., J. Catal., 2007, 249, 195

    CAS  Google Scholar 

  31. Zhang W. N., Zhi Y. C., Huang J. D., Wu X. Q., Zeng S., Xu S. T., Zheng A. M., Wei Y. X., Liu Z. M., ACS Catal., 2019, 9, 7373

    CAS  Google Scholar 

  32. Zhong J. W., Han J. F., Wei Y. X., Xu S. T., Sun T. T., Zeng S., Guo X. W., Song C. S., Liu Z. M., Chin. J. Catal., 2019, 40, 477

    CAS  Google Scholar 

  33. Zhong J. W., Han J. F., Wei Y. X., Xu S. T., Sun T. T., Guo X. W., Song C. S., Liu Z. M., Chin. J. Catal., 2018, 39, 1821

    CAS  Google Scholar 

  34. Song W. G., Haw J. F., Nicholas J. B., Heneghan C. S., J. Am. Chem. Soc., 2000, 122, 10726

    CAS  Google Scholar 

  35. Song W. G., Nicholas J. B., Sassi A., Haw J. F., Catal. Lett., 2002, 81, 49

    CAS  Google Scholar 

  36. Dai W. L., Wang C. M., Dyballa M., Wu G. J., Guan N. J., Li L. D., Xie Z. K., Hunger M., ACS Catal., 2015, 5, 317

    CAS  Google Scholar 

  37. Wang C. M., Wang Y. D., Xie Z. K., Catal. Sci. Technol., 2014, 4, 2631

    CAS  Google Scholar 

  38. Liu G. Y., Tian P., Li J. Z., Zhang D. Z., Zhou F., Liu Z. M., Microporous Mesoporous Mater., 2008, 111, 143

    CAS  Google Scholar 

  39. Wang J. B., Wei Y. X., Li J. Z., Xu S. T., Zhang W. N., He Y. L., Chen J. R., Zhang M. Z., Zheng A. M., Deng F., Guo X. W., Liu Z. M., Catal. Sci. Technol., 2016, 6, 89

    Google Scholar 

  40. Guisnet M., J. Mol. Catal. A: Chem., 2002, 182, 367

    Google Scholar 

  41. Yu B. W., Zhang W. N., Wei Y. X., Wu X. Q., Sun T. T., Fan B. H., Xu S. T., Liu Z. M., Chem. Commun., 2020, 46, 36

    Google Scholar 

  42. Gao S. S., Xu S. T., Wei Y. X., Qiao Q. L., Xu Z. C., Wu X. Q., Zhang M. Z., He Y. L., Xu S. L., Liu Z. M., J. Catal., 2018, 367, 306

    CAS  Google Scholar 

  43. Wei Y. X., Li J. Z., Yuan C. Y., Xu S. T., Zhou Y., Chen J. R., Wang Q. Y., Zhang Q., Liu Z. M., Chem. Commun., 2012, 48, 3082

    CAS  Google Scholar 

  44. Hereijgers B. P. C., Bleken F., Nilsen M.H., Svelle S., Lillerud K. P., Bjorgen M., Weckhuysen B. M., Olsbye U., J. Catal., 2009, 264, 77

    CAS  Google Scholar 

  45. Zhang W. N., Zhang M. Z., Xu S. T., Gao S. S., Wei Y. X., Liu Z. M., ACS Catal., 2020, 10, 4510

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxu Wei or Zhongmin Liu.

Additional information

Supported by the National Key R&D Program of China(No.2018YFB0604901), the National Natural Science Foundation of China(Nos.21991090, 21991092, 21972142, 91834302, 91745109), the Liaoning Revitalization Talents Program, China(Nos. XLYC1808014, XLYC1807227), the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No. 2014165), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Nos.QYZDY-SSW-JSC024, QYZDB-SSW-SLH026), the International Partnership Program of the Chinese Academy of Sciences(No.121421KYSB20180007) and the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21030200).

Supporting Information

40242_2020_216_MOESM1_ESM.pdf

Insight into the Dual Cycle Mechanism of Methanol-to-Olefins Reaction over SAPO-34 Molecular Sieve by Isotopic Tracer Studies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Lou, C., Zhang, W. et al. Insight into the Dual Cycle Mechanism of Methanol-to-Olefins Reaction over SAPO-34 Molecular Sieve by Isotopic Tracer Studies. Chem. Res. Chin. Univ. 36, 1203–1208 (2020). https://doi.org/10.1007/s40242-020-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0216-x

Keywords

Navigation