Skip to main content

Advertisement

Log in

Efficient Syngas-to-Olefins Conversion via Kaolin Modified SAPO-34 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The preparation circumstances and effects of the kaolin-modified SAPO-34 molecular sieves were studied in order to support the industrial application of the cutting-edge technology for producing light olefins from syngas catalyzed by bifunctional catalyst. Additionally, their apparent morphology, crystal structure, structural features, and acid strength were tested. The results demonstrated that kaolin-based molecular sieves are thinly layered and have an acid strength and pore structure that are more conducive to reactions. The effect of the mass ratio of the oxide to the molecular sieve, the hydrogen to carbon ratio of the feed gas, and other reaction conditions on the catalytic activity of the bifunctional catalyst was investigated using modified molecular sieves. Under the reaction conditions of the oxide to molecular sieve mass ratio of 2:1, feed gas composition of n(H2)/n(CO) = 2, 400 °C, and 3 MPa, a CO conversion of 50.11% with a low CO2 selectivity of 17.01% and a light olefins yield of 24.18% could be achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao Z, Jiang J, Wang F (2021) J Energy Chem 56:193–202

    Article  CAS  Google Scholar 

  2. Bao J, Yang G, Yoneyama Y, Tsubaki N (2019) ACS Catal 9(4):3026–3053

    Article  CAS  Google Scholar 

  3. Liu Y, Deng D, Bao X (2020) Chem 610:2497–2514

    Article  Google Scholar 

  4. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Catal Today 1061(4):103–107

    Article  Google Scholar 

  5. Koempel H, Liebner W (2007) Stud Surf Sci Catal 167:261–267

    Article  Google Scholar 

  6. Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Appl Catal 64:31–40

    Article  CAS  Google Scholar 

  7. Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36(5):317–326

    Article  PubMed  CAS  Google Scholar 

  8. Schwach P, Pan X, Bao X (2017) Chem Rev 117(13):8497–8520

    Article  PubMed  CAS  Google Scholar 

  9. Keller G, Bhasin M (1982) J Catal 73(1):9–19

    Article  CAS  Google Scholar 

  10. H M Torres Galvis,K P de Jong (2013) ACS catalysis 3:2130–2149.

  11. An Y, Lin T, Yu F, Yang Y, Zhong L, Wu M, Sun Y (2017) SCIENCE CHINA Chem 60:887–903

    Article  CAS  Google Scholar 

  12. Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M (2016) Science 3516277:1065–1068

    Article  Google Scholar 

  13. Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y (2016) Nature 538:84–87

    Article  PubMed  CAS  Google Scholar 

  14. H M Torres Galvis, A C J Koeken, J H Bitter, T Davidian, M Ruitenbeek, A I Dugulan,K P de Jong (2013) Journal of Catalysis 303:22–30.

  15. Liu Y, Lu F, Tang Y, Liu M, Tao FF, Zhang Y (2020) Appl Catal B 261:118219

    Article  CAS  Google Scholar 

  16. Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) The Journal of Physical Chemistry C 114(17):7895–7903

    Article  CAS  Google Scholar 

  17. Biloen P, Sachtler WHM (1981) Adv Catal 30:165–216

    CAS  Google Scholar 

  18. Liu X, Zhou W, Yang Y, Cheng K, Kang J, Zhang L, Zhang G, Min X, Zhang Q, Wang Y (2018) Chem Sci 9(20):4708–4718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang Z, Huang Y, Ma H, Qian W, Zhang H, Ying W (2021) Catal Commun 152:106292

    Article  CAS  Google Scholar 

  20. Su J, Wang D, Wang Y, Zhou H, Liu C, Liu S, Wang C, Yang W, Xie Z, He M (2018) ChemCatChem 10(7):1536–1541

    Article  CAS  Google Scholar 

  21. Zhang P, Meng F, Yang L, Yang G, Liang X, Li Z (2021) Ind Eng Chem Res 6036:13214–13222

    Article  Google Scholar 

  22. Wragg DS, Akporiaye D, Fjellvåg H (2011) J Catal 279(2):397–402

    Article  CAS  Google Scholar 

  23. Luo M, Wang D, Fu Y, Mao G, Wang B (2018) Eur J Inorg Chem 2018(30):3491–3495

    Article  CAS  Google Scholar 

  24. Guo Z, Miao P, Zhu W, Guo L, Li F, Xue Y, Yin Q, Yuan R, Xu L (2017) Catalysts 7(5):1–13

    Article  Google Scholar 

  25. Hirota Y, Murata K, Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2010) Mater Chem Phys 123:507–509

    Article  CAS  Google Scholar 

  26. Lin S, Li J, Sharma RP, Yu J, Xu R (2010) Top Catal 53:1304–1310

    Article  CAS  Google Scholar 

  27. Askari S, Halladj R (2012) Ultrason Sonochem 19(3):554–559

    Article  PubMed  CAS  Google Scholar 

  28. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F-S (2012) J Am Chem Soc 13437:15173–15176

    Article  Google Scholar 

  29. Zhang Y, Ren Z, Wang Y, Deng Y, Li J (2018) Catalysts 8(12):37–38

    Article  CAS  Google Scholar 

  30. Askari S, Kalhori SK, Halladj R, Najafi N (2016) Prog React Kinet Mech 413:268–276

    Article  Google Scholar 

  31. P Emrani, S Fatemi,T S ASHRAF (2011) International Journal of Critical Infrastructure Protection 4(30):29–36.

  32. Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Microporous Mesoporous Mater 164:214–221

    Article  CAS  Google Scholar 

  33. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Chem Commun 50:6502–6505

    Article  CAS  Google Scholar 

  34. Li M, Wang Y, Bai L, Chang N, Nan G, Hu D, Zhang Y, Wei W (2017) Appl Catal A 531:203–211

    Article  CAS  Google Scholar 

  35. Lei X, Liu Z, Du A, Wei Y, Sun Z (2004) Natural Gas Conversion VII 147:445–450

    Google Scholar 

  36. Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS (2003) Fuel Process Technol 83:203–218

    Article  CAS  Google Scholar 

  37. Inui T, Kang M (1997) Appl Catal A 164:211–223

    Article  CAS  Google Scholar 

  38. Sedighi M, Ghasemi M, Sadeqzadeh M, Hadi M (2016) Powder Technol 291:131–139

    Article  CAS  Google Scholar 

  39. Aghaei E, Haghighi M (2015) J Porous Mater 22:187–200

    Article  CAS  Google Scholar 

  40. Ye L, Cao F, Ying W, Fang D, Sun Q (2011) J Porous Mater 18:225–232

    Article  CAS  Google Scholar 

  41. Qiao Y, Yang M, Gao B, Wang L, Tian P, Xu S, Liu Z (2016) Chem Commun 52(33):5718–5721

    Article  CAS  Google Scholar 

  42. Xi D, Sun Q, Chen X, Wang N, Yu J (2015) Chem Commun 51(60):11987–11989

    Article  CAS  Google Scholar 

  43. Zhen LA, Hu L, Tz A, Yi W, Ps A, Yu WA, Fsa D, Xl A, Zy A (2020) Catal Today 358:109–115

    Article  Google Scholar 

  44. Liu B, An P, Chen J, Xu X, Yang F (2020) Process Saf Environ Prot 140:380–391

    Article  CAS  Google Scholar 

  45. Sun Q, Xie Z, Yu J (2018) Natl Sci Rev 5(4):542–558

    Article  CAS  Google Scholar 

  46. Wang T, Lu X, Yan Y (2010) Microporous Mesoporous Mater 136(1–3):138–147

    Article  CAS  Google Scholar 

  47. Rao K, Huggins F, Huffman G, Gormley R, O’Brien RJ, Davis BH (1996) Energy Fuels 10(3):546–551

    Article  CAS  Google Scholar 

  48. P Wang, A Lv, J Hu, J a Xu,G Lu (2011) Industrial & Engineering Chemistry Research 50(17):9989–9997.

  49. Wang P, Zha F, Yao L, Chang Y (2018) Appl Clay Sci 163:249–256

    Article  CAS  Google Scholar 

  50. Zhu Y, Pan X, Jiao F, Li J, Yang J, Ding M, Han Y, Liu Z, Bao X (2017) ACS Catal 7(4):2800–2804

    Article  CAS  Google Scholar 

  51. Jiao F, Pan X, Gong K, Chen Y, Li G, Bao X (2018) Angew Chem Int Ed 57:4692–4696

    Article  CAS  Google Scholar 

  52. Ni Y, Liu Y, Chen Z, Yang M, Liu H, He Y, Fu Y, Zhu W, Liu Z (2018) ACS Catal 9(2):1026–1032

    Article  Google Scholar 

  53. Su J, Zhou H, Liu S, Wang C, Jiao W, Wang Y, Liu C, Ye Y, Zhang L, Zhao Y (2019) Nat Commun 10:1297

    Article  PubMed  PubMed Central  Google Scholar 

  54. Raveendra G, Li C, Cheng Y, Meng F, Li Z (2018) New J Chem 42:4419–4431

    Article  CAS  Google Scholar 

  55. Inui T, Matsuda H, Okaniwa H, Miyamoto A (1990) Appl Catal 58(1):155–163

    Article  CAS  Google Scholar 

  56. Zhu M, Wachs IE (2016) ACS Catal 62:722–732

    Article  Google Scholar 

  57. Boccuzzi F, Garrone E, Zecchina A, Bossi A, Camia M (1978) J Catal 51(2):160–168

    Article  CAS  Google Scholar 

  58. Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J (2013) Angew Chem Int Ed 52(44):11564–11568

    Article  CAS  Google Scholar 

  59. Arstad B, Kolboe S (2001) J Am Chem Soc 123(33):8137–8138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Sichuan Coal Industry Group Limited Liability Company for Development of Coal-coupled Methane Plasma for Synthesis of Ethylene and Acetylene (No. 2019H0449), and the National Natural Science Foundation of China (No. 22178236, No. 21878194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zheng.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Zheng, H., Xiao, D. et al. Efficient Syngas-to-Olefins Conversion via Kaolin Modified SAPO-34 Catalyst. Catal Lett 154, 664–673 (2024). https://doi.org/10.1007/s10562-023-04336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04336-9

Keywords

Navigation