Skip to main content
Log in

Transformation of Methanol to Hydrocarbons (MTH): Comparison Between MeAPO-36 (Me = Zn, Co, Mg) and Modified ZSM-5 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper presents a study of the use of zeolitic catalysts and modified zeotypes for the reaction of transformation of methanol to hydrocarbons (MTH). Materials of the aluminophosphate type MeAPO-36 where Me is Zn, Mg and Co were prepared, in addition to modifying an acidic commercial zeolite with zinc ions by ion exchange. The physicochemical properties of the zeotypes were studied using XRD (X-ray diffraction), N2 adsorption–desorption, temperature programmed desorption of NH3 and SEM (Scanning Electron Microscopy). The catalytic performance of these catalysts was studied in the MTO reaction at 400 °C and atmospheric pressure using a WHSV of 4.24 h−1 in a fixed bed reactor. The incorporation of Zn in the ZSM-5 zeolite induced a relevant effect on acidity, generating a higher density of acid sites. In this sense, Zn-modified ZSM-5 showed higher selectivity to the BTX fraction (benzene, toluene and xylenes). The commercial zeolite modified with Zn ions presented a complete conversion of methanol with a higher selectivity of aromatics compounds totals (34.9% mol) at 400 °C. On the other hand, the incorporation of metals (Zn, Co, Mg) in MeAPO-36 materials had an important effect on acidity and therefore on selectivity in the MTH process. The olefins and paraffins selectivity decreased in the order Zn < Co ≈ Mg, being the selectivity to olefins close to 71–73% mol with these two latter catalysts, probably due to their low acidity. On the other hand, the ZnAPO-36 material was selective for the formation of aromatic compounds, due to the presence of zinc, which is an aromatizing agent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AlPO4-n:

Microporous crystalline aluminophosphate

AFI:

Aluminophosphate five structure

ATS:

Aluminophosphate thirty-six structure

BET:

Brunauer – Emmett – Teller equation

BTX:

Bencene, toluene and xilenes fraction

DTG:

Derivate thermogravimetric

ICP-OES:

Inductively coupled plasma optical emission spectrometry

MR:

Member rings

MTA:

Methanol to aromatics

MTH:

Methanol to hydrocarbons

MTO:

Methanol to olefins

MeAPO:

Microporous crystalline aluminophosphate containing a transition metal ion,

SM:

Substitution isomorphic

SDA:

Structure-directing agent

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analyses

TPA:

Tripropylamine

TPD:

Temperature programmed desorption

WHSV:

Weight hourly space velocity

XRD:

X-ray diffraction

References

  1. Kianfar E, Hajimirzaee S, Mousavian S, Mehr AS (2020) Zeolite-based catalysts for methanol to gasoline process: a review. Microchem J 156:104822

    CAS  Google Scholar 

  2. Chang CD, Silvestri JA (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    CAS  Google Scholar 

  3. Zhang J, Qian W, Kong C, Wei F (2015) Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal 5(5):2982–2988

    CAS  Google Scholar 

  4. Niu X, Gao J, Miao Q, Dong M, Wang G, Weibin F, Qin Z, Wang J (2014) Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Micropor Mesopor Mater 197:252–261

    CAS  Google Scholar 

  5. Garcia-Ruiz M, Solis-Casados DA, Aguilar-Pliego J, Márquez-Álvarez C, Sastre de Andrés E, Sanjurjo-Tartalo D, Sainz-Vaque R, Grande-Casas M (2020) ZSM-5 zeolites modified with Zn and their effect on the crystal size in the conversion of methanol to light aromatics (MTA). React Kinet Mech Catal 129:1878–5190

    Google Scholar 

  6. Yubing X, Puyu Q, Xinping D, Haiqiang L, Youzhu Y (2013) Enhanced performance of Zn–Sn/HZSM-5 catalyst for the conversion of methanol to aromatics. Catal Lett 143:798–806

    Google Scholar 

  7. Zhou F, Gao Y, Ma H, Wu G, Liu C (2017) Catalytic aromatization of methanol over post-treated ZSM-5 zeolites in the terms of pore structure and acid sites properties. Molec Catal 438:37–46

    CAS  Google Scholar 

  8. Ni Y, Sun A, Xi Wu, Hai G, Hu J, Li T, Li G (2011) The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol. Micropor Mesopor Mater 143:435–442

    CAS  Google Scholar 

  9. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147

    CAS  Google Scholar 

  10. Manjón-Sanz A, Sánchez-Sánchez M, Muñoz-Gómez P, García R, Sastre E (2010) Non-templated intercrystalline mesoporosity in heteroatom-doped AlPO4-5 using N-methyldicyclohexylamine as structure-directing agent. Micropor Mesopor Mater 131:331–341

    Google Scholar 

  11. Xu J, Zhou D, Song X, Chen L, Yu J, Ye C, Deng F (2008) Crystallization of magnesium substituted aluminophosphate of type-36 as studied by solid-state NMR spectroscopy. Micropor Mesopor Mater 115:576–584

    CAS  Google Scholar 

  12. Kumar-Saha S, Waghmode SB, Maekawa H, Kawase R, Komura K, Kubota Y, Sugi Y (2005) Magnesioaluminophosphate molecular sieves with ATS topology: Synthesis by dry-gel conversion method and catalytic properties in the isopropylation of biphenyl. Micropor Mesopor Mater 81:277–287

    Google Scholar 

  13. O’Brien MG, Sanchez-Sanchez M, Beale AM, Lewis DW, Sankar G, Catlow CR (2007) effect of organic templates on the kinetics and crystallization of microporous metal-substituted aluminophosphates. J Phys Chem C 111:16951–16961

    Google Scholar 

  14. Martens JA, Janssens C, Grobet PJ, Beyer HK, Jacobs PA (1989) Isomorphic Substitution of Silicon in SAPO-37. Stud Surf Sci Catal 49:215–225

    Google Scholar 

  15. Weckhuysen BM, Rao RR, Martens JA, Schoonheydt RA. 1999 Transition metal ions in microporous crystalline aluminophosphates: Isomorphous substitution. Eur J Inorg Chem. 565–577.

  16. Hartmann M, Kevan L (1999) Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location. Interaction with Adsorbates and Catalytic Properties, Chem Rev 99:635–664

    CAS  PubMed  Google Scholar 

  17. Makarova M, Ojo A, Al-Ghefaili K, Dwyer J. In: Proceedings of the IX International Zeolite Conference. Montreal, Canada. 1992; 2: 259.

  18. Gómez-Hortigüela L, Márquez-Álvarez C, Grande-Casas M, García R, Pérez-Pariente J (2009) Tailoring the acid strength of microporous silicoaluminophosphates through the use of mixtures of templates: control of the silicon incorporation mechanism. Micropor Mesopor Mater 121:129–137

    Google Scholar 

  19. Sanchez-Sanchez M, Sankar G, Simperler A, Bell RG, Catlow CR, Thomas JM (2003) The extremely high specificity of N-methyldicyclohexylamine for the production of the large-pore microporous AFI material. Catal Lett 88(3–4):163–167

    CAS  Google Scholar 

  20. Prasad S, Dewey HB, Haw JF (1996) Probing acid sites in MAPO-36 by solid state NMR. Catal Lett 39:141–146

    CAS  Google Scholar 

  21. Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reinoso F, Rouquerol J, Sing K (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  22. Wang Q, Chen G, Xu S (2009) Hierarchical architecture observed in microspheres comprising microporous AlPO4-11 nanocrystals. Micropor Mesopor Mater 119:315–321

    CAS  Google Scholar 

  23. Basina G, Shamia DA, Polychronopoulou K, Tzitzios V, Balasubramanian VV, Dawaymeh F, Karanikolosa GN, Wahedi YA (2018) Hierarchical AlPO4-5 and SAPO-5 microporous molecular sieves with mesoporous connectivity for water sorption applications. Surf Coat Tech 353:1–29

    Google Scholar 

  24. Gao B, Tian P, Li M, Yang M, Qiao Y, Wang L, Xu S, Liu Z (2015) In situ growth and assembly of microporous aluminophosphate nanosheets into ordered architectures at low temperature and their enhanced catalytic performance. J Mater Chem A 3:7741–7749

    CAS  Google Scholar 

  25. Utchariyajit K, Wongkasemjit S (2008) Structural aspects of mesoporous AlPO4-5 (AFI) zeotype using microwave radiation and alumatrane precursor. Micropor Mesopor Mater 114:175–184

    CAS  Google Scholar 

  26. Lin Y, Wei Y, Zhang L, Guo K, Wang M, Huang P, Meng X, Zhang R (2019) Facile ionothermal synthesis of SAPO-LTA zeotypes with high structural stability and their catalytic performance in MTO reaction. Micropor Mesopor Mater 288:109611

    CAS  Google Scholar 

  27. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Use of different templates on SAPO-34 synthesis: effect on the acidity and catalytic activity in the MTO reaction. Catal Today 179:27–34

    Google Scholar 

  28. Blasco T, Fernandez L, Martinez-Arias A, Sanchez-Sanchez M, Concepcion P, Lopez-Nieto JM (2000) Magnetic resonance studies on V-containing, and V. Mg-containing AFI aluminophosphates Micropor Mesopor Mater 39:219–228

    CAS  Google Scholar 

  29. Machado MS, Perez-Pariente J, Sastre E, Cardoso ED, Giotto MV, García-Fierro J, Fornes V (2002) Characterization and catalytic properties of MAPO-36 and MAPO-5: effect of magnesium content. J Catal 205:299–308

    CAS  Google Scholar 

  30. Kianfar E (2019) Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev Inorg Chem 39(3):157–177

    CAS  Google Scholar 

  31. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins. Catal Today 213:219–225

    Google Scholar 

  32. Wang L, Guo Ch, Yan S, Huang X, Li Q (2003) High-silica SAPO-5 with preferred orientation: synthesis, characterization and catalytic applications. Micropor Mesopor Mater 64:63–68

    CAS  Google Scholar 

  33. Suib SL, Winiecki AM, Kostapapas A (1987) Surface Chemical states of Aluminophosphate and Silicoaluminophosphate molecular sieves. Lagmuir 3:483–488

    CAS  Google Scholar 

  34. Blackwell CS, Patton RL (1988) Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. J Phys Chem 92:3965–3970

    CAS  Google Scholar 

  35. Barthomeuf D. In Acidity and Basicity of Solids: Theory, Assessment and Utility In: Fraissard J and Petrakis L Eds.; NATO ASI, Ser. C. Kluwer Academic Publishers. 1993; 444

  36. Dawaymeh F, Elmutasim O, Gaber D, Gaber S, Reddy KS, Basina G, Polychronopoulou K, Al Wahedi Y, Karanikolos GN (2021) Metal substitution effects of aluminophosphate AlPO4-5 as solid acid catalyst for esterification of acetic acid with ethanol. Molecular Catal 501:111371

    CAS  Google Scholar 

  37. Su X, Wang G, Bai X, Wu W, Xiao L, Fang Y, Zhang J (2016) Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chem Eng J 293:365–375

    CAS  Google Scholar 

  38. Zhang J, Qian W, Kong C, Wei F (2015) Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal 5:2982–2988

    CAS  Google Scholar 

  39. Jia Y, Wang J, Zhang K, Chen G, Yang Y, Liu S, Ding C, Meng Y, Liu P (2018) Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Tech 328:415–429

    CAS  Google Scholar 

  40. Topsøe N, Pedersen K, Derouane E (1981) Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. J Catal 70:41–52

    Google Scholar 

  41. Joly JF, Ajot H, Merlen E, Raatz F, Alario F (1991) Parameters affecting the dispersion of the gallium phase of gallium H-MFI aromatization catalysts. Appl Catal A: Gen 79:249–263

    CAS  Google Scholar 

  42. Baran R, Krafft JM, Onfroy T, Grzybek T, Dzwigaj S (2016) Influence of the nature and environment of cobalt on the catalytic activity of Co-BEA zeolites in selective catalytic reduction of NO with ammonia. Micropor Mesopor Mater 225:515–523

    CAS  Google Scholar 

  43. Wang H, Yiyan W, Wenrui L, Huanhuan C, Jianhua L, Jidong L (2020) Amorphous magnesium substituted mesoporous aluminophosphate: An acid-base sites synergistic catalysis for transesterification of diethyl carbonate and dimethyl carbonate in fixed-bed reactor. Micropor Mesopor Mater 292:109757

    CAS  Google Scholar 

  44. Xu D, Fan D, Shen W (2013) Catalyst-free direct vapor-phase growth of Zn1−x CuxO micro-cross structures and their optical properties. Nanoscale Res Lett 8:46

    PubMed  PubMed Central  Google Scholar 

  45. Dyballa M, Becker P, Trefz D, Klemm E, Fischer A, Jakob H, Hunger M (2016) Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM5, ZSM-11, and ZSM-22. Appl Catal A 510:233–243

    CAS  Google Scholar 

  46. Jia Y, Wang J, Kan Z, Liu S, Chen G, Yang Y, Ding C, Liu P (2017) Catalytic Conversion of Methanol to Aromatics over Nanosized HZSM-5 Zeolite Modified by ZnSiF6·6H2O. Catal Sci Technol 7:1776–1791

    CAS  Google Scholar 

  47. Kang M (2000) Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s). J Mol Catal A Chem 160:437–444

    CAS  Google Scholar 

  48. Garcia RM, Solis-Casados DA, Aguilar-Pliego J, Marquez-Alvarez C, Sastre de Andres E, Sanjurjo-Tartalo D, Sanchez-Sanchez M, Grande-Casas M (2020) Synthesis and characterization of aluminophosphates type-5 and 36 doubly modified with Si and Zn and its catalytic application in the reaction of methanol to hydrocarbons (MTH). Top Catal 63:437–450

    Google Scholar 

  49. Garcia RM, Aguilar-Pliego J, Marquez-Alvarez C, Sastre de Andres E. 2021 Synthesis and Characterization of ZnAPO-34 and SAPO-34: effect of Zn on the acidity and catalytic activity in the MTO reaction. J Mex Chem Soc. 65: 1.

  50. Huang H, Yu M, Zhang Q, Li C (2020) Insights into NH4-SAPO-34 preparation procedure: Effect of the number of ammonium exchange times on catalytic performance of Zn-modified SAPO-34 zeolite for methanol to olefin reaction. Micropor Mesopor Mater 295:109971

    CAS  Google Scholar 

  51. Zhong J, Han J, Wei Y, Xu S, Sun T, Guo X, Song C, Liu Z (2019) The template-assisted zinc ion incorporation in SAPO-34 and the enhanced ethylene selectivity in MTO reaction. J Energy Chem 32:174–181

    Google Scholar 

  52. Sun Q, Wang N, Bai R, Chen G, Shi Z, Zou Y, Yu J (2018) Mesoporogen-free synthesis of nano-sized hierarchical SAPO34 zeolite with reduced template consumption and excellent MTO performance. Chem Sus Chem 11:3812–3820

    CAS  Google Scholar 

  53. Song W, Haw J, Nicholas J, Heeneghan C (2000) Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 122:10726–10727

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Comecyt—Consejo Mexiquense de Ciencia y Tecnología for catedra support. The authors thank the Spanish Research Agency -AEI- and the European Regional Development Fund—FEDER- for the funding of this work, through the Project MAT2016-77496-R funded by MCIN/AEI/http://dx.doi.org/10.13039/501100011033. MGR thanks the Molecular Sieves Group of the Institute of Catalysis and Petrochemistry (CSIC) in Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misael García Ruiz.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, M.G., Solís Casados, D.A., Pliego, J.A. et al. Transformation of Methanol to Hydrocarbons (MTH): Comparison Between MeAPO-36 (Me = Zn, Co, Mg) and Modified ZSM-5 Catalysts. Catal Lett 153, 2493–2503 (2023). https://doi.org/10.1007/s10562-022-04181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04181-2

Keywords

Navigation