Skip to main content
Log in

Theoretical studies on the dihydrogen bonding between shortchain hydrocarbon and magnesium hydride

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The C—H…H dihydrogen-bonded complexes of methane, ethylene, acetylene, and their derivatives with magnesium hydride were systematically investigated at MP2/aug-cc-PVTZ level. The results confirm that the strength of dihydrogen bonding increases in the following order of proton donors: C(sp 3)—H<C(sp 2)—H<C(sp)—H and chlorine substituents enhance the C—H…H interaction. In the majority of the complexes with a cyclic structure, the Mg—H proton-accepting bond is more sensitive to the surroundings than C—H proton-donating bond. The nature of the electrostatic interaction in these C—H…H dihydrogen bonds was also unveiled by means of the atoms in molecules(AIM) analysis. The natural bond orbital(NBO) analysis suggests that the charge transfer in the cyclic complexes is characteristic of dual-channel. The direction of the net charge transfer in the cyclic complexes is contrary to that previously found in dihydrogen bonded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X., Hall M. B., J. Am. Chem. Soc., 2009, 131, 10901

    Article  CAS  Google Scholar 

  2. Cramer C. J., Gladfelter W. L., Inorg. Chem., 1997, 36, 5358

    Article  CAS  Google Scholar 

  3. Siegbahn P. E. M., Eisenstein O., Rheingold A. L., Koetzle T. F., Acc. Chem. Res., 1996, 29, 348

    Article  Google Scholar 

  4. Richardson T. B., Koetzle T. F., Crabtree R. H., Inorg. Chim. Acta, 1996, 250, 69

    Article  CAS  Google Scholar 

  5. Liu Q., Hoffmann R., J. Am. Chem. Soc., 1995, 117, 10108

    Article  CAS  Google Scholar 

  6. Kulkarni S. A., Srivastava A. K., J. Phys. Chem. A, 1999, 103, 2836

    Article  CAS  Google Scholar 

  7. Braga D., De Leonardis P., Grepioni F., Tedesco E., Calhorda M. J., Inorg. Chem., 1998, 37, 3337

    Article  CAS  Google Scholar 

  8. Kulkarni S. A., J. Phys. Chem. A, 1999, 103, 9330

    Article  CAS  Google Scholar 

  9. Custelcean R., Jackson J. E., Chem. Rev., 2001, 101, 1963

    Article  CAS  Google Scholar 

  10. Alkorta I., Elguero J., Chem. Soc. Rev., 1998, 27, 163

    Article  CAS  Google Scholar 

  11. Epstein L. M., Shubina E. S., Coord. Chem. Rev., 2002, 231, 165

    Article  CAS  Google Scholar 

  12. Xie G. B., Sueishi Y., Yamamoto S., Chem. Res. Chinese Universities, 2004, 20(5), 606

    CAS  Google Scholar 

  13. Liu Z. L., Song Y., Du C. F., Chem. Res. Chinese Universities, 2012, 28(6), 1066

    CAS  Google Scholar 

  14. Zierkiewicz W., Hobza P., Phys. Chem. Chem. Phys., 2004, 6, 5288

    Article  CAS  Google Scholar 

  15. Wu Y., Feng L., Zhang X. D., J. Mol. Struct.(Theochem.), 2008, 851, 294

    Article  CAS  Google Scholar 

  16. Lipkowski P., Grabowski S. J., Robinson T. L., Leszczynski J., J. Phys. Chem. A, 2004, 108, 10865

    Article  CAS  Google Scholar 

  17. Cybulski H., Tyminska E., Sadlej J., ChemPhysChem., 2006, 7, 629

    Article  CAS  Google Scholar 

  18. Robertson K. N., Knop O., Cameron T. S., Can. J. Chem., 2003, 81, 727

    Article  CAS  Google Scholar 

  19. Grabowski S. J., J. Phys. Chem. A, 2000, 104, 5551

    Article  CAS  Google Scholar 

  20. Alkorta I., Elguero J., Mó O., Yáñez M., Del Bene J. E., J. Phys. Chem. A, 2002, 106, 9325

    Article  CAS  Google Scholar 

  21. Feng L., Bai F. Q., Wu Y., Zhang H. X., Mol. Phys., 2011, 109, 645

    Article  CAS  Google Scholar 

  22. Bogdanović B., Angew. Chem. Int. Ed., 1985, 24, 262

    Article  Google Scholar 

  23. Bader R. F. W., Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990

    Google Scholar 

  24. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  25. Grabowski S. J., Sokalski W. A., Leszczynski J., J. Phys. Chem. A, 2005, 109, 4331

    Article  CAS  Google Scholar 

  26. Boys S. F., Bernardi F., Mol. Phys., 1970, 19, 553

    Article  CAS  Google Scholar 

  27. Bader R. F. W., Acc. Chem. Res., 1985, 18, 9

    Article  CAS  Google Scholar 

  28. Bader R. F. W., Chem. Rev., 1991, 91, 893

    Article  CAS  Google Scholar 

  29. Biegler-König F., AIM2000, University of Applied Sciences, Bielefeld

  30. Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev., 1988, 88, 899

    Article  CAS  Google Scholar 

  31. Grabowski S. J., Robinson T. L., Leszczynski J., Chem. Phys. Lett., 2004, 386, 44

    Article  CAS  Google Scholar 

  32. Alkorta I., Zborowski K., Elguero J., Solimannejad M., J. Phys. Chem. A, 2006, 110, 10279

    Article  CAS  Google Scholar 

  33. Alkorta M., Elguero J., Grabowski S. J., J. Phys. Chem. A, 2008, 112, 2721

    Article  CAS  Google Scholar 

  34. Popelier P. L. A., J. Phys. Chem. A, 1998, 102, 1873

    Article  CAS  Google Scholar 

  35. Espinosa E., Molins E., Lecomte C., Chem. Phys. Lett., 1998, 285, 170

    Article  CAS  Google Scholar 

  36. Domagala M., Grabowski S. J., Chem. Phys., 2010, 367, 1

    Article  CAS  Google Scholar 

  37. Chocholousova J., Spirko V., Hobza P., Phys. Chem. Chem. Phys., 2004, 6, 37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Zhang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21003057, 21173096), the National Basic Research Program of China(No.2013CB834801) and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110061110018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Bai, F. & Zhang, H. Theoretical studies on the dihydrogen bonding between shortchain hydrocarbon and magnesium hydride. Chem. Res. Chin. Univ. 30, 831–836 (2014). https://doi.org/10.1007/s40242-014-4051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4051-9

Keywords

Navigation