Skip to main content
Log in

Thermal kinetics and decomposition mechanism of 1-amino-1,2,3-triazolium nitrate

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The thermal decomposition kinetics of 1-amino-1,2,3-triazolium nitrate(ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates(2, 5, 10, 15 and 20 °C/min). The results show that the thermal decomposition of ATZ-NO3 consist of two stages corresponding to the losing of nitrate anion, substituent group and the splitting of triazole ring respectively. The kinetic triplets of the two stages were described by a three-step method. First, the differential Kissinger and intergral Ozawa methods were used to calculate the apparent activation energies(E) and pre-exponential factors(A) of the two decomposition stages. Second, two calculation methods(intergral Šatava-Šesták and differential Achar methods) were used to obtain several probable decomposition mechanism functions. Third, three judgment methods(average, double-extrapolation and Popescu methods) were used to confirm the most probable decomposition mechanism functions. Both reaction models of the two stages were random-into-nucleation and random-growth mechanisms with n=3/2 for the first stage and n=1/3, m=3 for the second stage. The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as \(\frac{{da}} {{dt}} = 10^{13.60} \times e^{ - \frac{{128970}} {{RT}}} (1 - a)\left[ { - \ln (1 - a)} \right]^{ - \frac{1} {2}}\) and \(\frac{{da}} {{dt}} = 10^{11.41} \times e^{ - \frac{{117370}} {{RT}}} (1 - a)\left[ { - \ln (1 - a)} \right]^{\frac{2} {3}}\). The thermodynamic parameters including Gibbs free energy of activation(ΔG ), entropy of activation(ΔS ) and enthalpy of activation(ΔH ), for the thermal decomposition reaction were also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sikder A. K., Sikder N., J. Hazard. Mater., 2004, 112(1/2), 1

    Article  CAS  Google Scholar 

  2. Singh R. P., Gao H., Meshri D. T., Shreeve J. M., Structure and Bonding, 2007, 125, 35

    Article  CAS  Google Scholar 

  3. Singh R. P., Verma R. D., Meshri D. T., Shreeve J. M., Angew. Chem. Inter. Ed., 2006, 45(22), 3584

    Article  CAS  Google Scholar 

  4. Steinhauser G., Klapötke T. M., Angew. Chem., 2008, 120(18), 3376

    Article  Google Scholar 

  5. Qi S. Y., Zhang J. G., Zhang T. L., Cui Y., Yang L., Yu K. B., Shu Y. J., Chem. J. Chinese Universities, 2009, 30(10), 1935

    CAS  Google Scholar 

  6. Zhao F. Q., Chen S. P., Fan G., Xie G., Jiao B. J., Gao S. L., Chem. J. Chinese Universities, 2008, 29(8), 1519

    Article  CAS  Google Scholar 

  7. Garg S., Gao H., Joo Y. H., Parrish D. A., Huang Y., Shreeve J. M., J. Am. Chem. Soc., 2010, 132(26), 8888

    Article  CAS  Google Scholar 

  8. Joo Y. H., Twamley B., Shreeve J. M., Chemistry-A European Journal, 2009, 15(36), 9097

    Article  CAS  Google Scholar 

  9. Klapöetke T. M., Stierstorfer J., J. Am. Chem. Soc., 2009, 131(3), 1122

    Article  Google Scholar 

  10. Klapötke T. M., Mayer P., Schulz A., Weigand J. J., J. Am. Chem. Soc., 2005, 127(7), 2032

    Article  Google Scholar 

  11. Xue H., Gao Y., Twamley B., Shreeve J. M., Chem. Mater., 2005, 17(1), 191

    Article  CAS  Google Scholar 

  12. Zeng Z., Gao H., Twamley B., Shreeve J. M., J. Mater. Chem., 2007, 17(36), 3819

    Article  CAS  Google Scholar 

  13. Zhang Y., Gao H., Guo Y., Joo Y. H., Shreeve J. M., Chemistry-A European Journal, 2010, 16(10), 3114

    Article  CAS  Google Scholar 

  14. Lin Q. H., Li Y. C., Li Y. Y., Wang Z., Liu W., Qi C., Pang S. P., J. Mater. Chem., 2012, 22(2), 666

    Article  CAS  Google Scholar 

  15. Pagoria P. F., Lee G. S., Mitchell A. R., Schmidt R. D., Thermochimica Acta, 2002, 384(1), 187

    Article  CAS  Google Scholar 

  16. Xue L., Zhao F. Q., Xing X. L., Zhou Z. M., Wang K., Gao H. X., Yi J. H., Xu S. Y., Hu R. Z., J. Therm. Anal. Calor., 2011, 104(3), 999

    Article  CAS  Google Scholar 

  17. Hu R. Z., Gao S. L., Zhao F. Q., Shi Q. Z., Zhang T. L., Zhang J. J., Thermal Analysis Kinetics, Science Press, Beijing, 2008, 151

    Google Scholar 

  18. Kissinger H. E., Anal. Chem., 1957, 29(11), 1702

    Article  CAS  Google Scholar 

  19. Jiménez A., Berenguer V., Lépez J., Sánchez A., J. Appl. Polym. Sci., 1993, 50(9), 1565

    Article  Google Scholar 

  20. Škvára F., Šesták J., J. Therm. Anal. Calor., 1975, 8(3), 477

    Article  Google Scholar 

  21. Achar B. N., Sharp J. H., Proceedings of the International Clay Conference, Jerusalem, 1966, (1), 67

    Google Scholar 

  22. Sharp J. H., Wentworth S. A., Anal. Chem., 1969, 41(14), 2060

    Article  CAS  Google Scholar 

  23. Pan Y. X., Guan X. Y., Feng Z. Y., Li X. Y., Yan Z., Chinese J. Chem. Phys., 1998, 14(12), 1088

    CAS  Google Scholar 

  24. Pan Y. X., Guan X. Y., Feng Z. Y., Li X. Y., Wu Y. S., Chinese J. Inorg. Chem., 1999, 15(2), 111

    Google Scholar 

  25. Popescu C., Thermochimica Acta, 1996, 285(2), 309

    Article  CAS  Google Scholar 

  26. Zhang J. J., Ren N., Bai J. H., Chinese Journal of Chemistry, 2006, 24(3), 360

    Article  CAS  Google Scholar 

  27. Garcìa-Pèrez M., Chaala A., Yang J., Roy C., Fuel, 2001, 80(9), 1245

    Article  Google Scholar 

  28. Starink M. J., Thermochimica Acta, 1996, 288(1/2), 97

    Article  CAS  Google Scholar 

  29. Zhao F. Q., Xue L., Xing X. L., Hu R. Z., Zhou Z. M., Gao H. X., Yi J. H., Xu S. Y., Pei Q., Scientia Sinica Chimica, 2010, 40(9), 1430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Additional information

Supported by the National Defense Pre-Research Foundation of China(Nos.40406050101, 62201070103).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Li, X., Yang, R. et al. Thermal kinetics and decomposition mechanism of 1-amino-1,2,3-triazolium nitrate. Chem. Res. Chin. Univ. 30, 130–136 (2014). https://doi.org/10.1007/s40242-014-3299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-3299-4

Keywords

Navigation