Skip to main content
Log in

Thermal behavior of 1,2,3-triazole nitrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is \( C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T \) (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gao HX, Ye CF, Piekarski CM. Computational characterization of energetic salts. J Phys Chem C. 2007;111:10718–26.

    Article  CAS  Google Scholar 

  2. Agrawal JP. Recent trends in high-energy materials. Prog Energ Combust Sci. 1998;24:1–13.

    Article  CAS  Google Scholar 

  3. Huang HF, Meng ZH, Zhou ZM, Gao HX, Zhang J, Wu YK. Energetic salts and energetic ionic liquids. Prog Chem. 2009;21:152–61 (in Chinese).

    CAS  Google Scholar 

  4. Drake G, Kaplan G, Hall L, Hawkins T, Larue J. A new family of energetic ionic liquids 1-amino-3-alkyl-1,2,3-triazolium nitrates. J Chem Crys. 2007;37:15–22.

    Article  CAS  Google Scholar 

  5. Ye CF, Shreeve JM. Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 2007;111:1456–61.

    Article  CAS  Google Scholar 

  6. Tong B, Liu QS, Tan ZC, Urs WB. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculation. J Phys Chem A. 2010;114:3782–7.

    Article  CAS  Google Scholar 

  7. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H. Why are ionic liquids liquid? A simple explanation based on lattice and salvation energies. J Am Chem Soc. 2006;128:13427–34.

    Article  CAS  Google Scholar 

  8. Kolaski M, Lee HM, Pak C, Kim KS. Charge-transfer-to-solvent-driven dissolution dynamics of 1-(H2O)2-5 upon excitation: excited-state ab initio molecular dynamics simulations. J Am Chem Soc. 2008;130:103–12.

    Article  CAS  Google Scholar 

  9. Mel’yanenko EVN, Verevkin SP, Heintz A. Imidazolium-based ionic liquids. 1-Methyl imidazolium nitrate: thermochemical measurements and Ab initio calculations. J Phys Chem B. 2009;113:9871–81.

    Article  Google Scholar 

  10. Urszula D, Andrzej M. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J Phys Chem B. 2007;111:11984–8.

    Article  Google Scholar 

  11. Fischer G, Holl G, Klapötke TM, Weigand JJ. A study on thermal decomposition behavior of derivatives of 1,5-diamino-1H-tetrazole (DAT): a new family of energetic heterocyclic-based salts. Thermochim Acta. 2005;437:168–75.

    Article  CAS  Google Scholar 

  12. Chowdhury A, Thynell ST. Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 2007;466:1–11.

    Article  CAS  Google Scholar 

  13. Chowdhury A, Thynell ST, Lin P. Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 2009;485:1–12.

    Article  CAS  Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JG. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008. (in Chinese).

    Google Scholar 

  17. Xing XL, Xue L, Zhao FQ, Gao HX, Hu RZ. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 2009;35:491–7.

    Google Scholar 

  18. Gao HX, Zhao FQ, Hu RZ, Zhao HA, Zhang H. Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Calorim. 2009;95:477–82.

    Article  CAS  Google Scholar 

  19. Xu KZ, Song JR, Zhao FQ, Ma HX, Gao HX, Chang CR, Ren YH, Hu RZ. Thermal behavior, specific heat capacity and adiabatic time-to explosion of G(FOX-7). J Hazard Mater. 2008;158:333–9.

    Article  CAS  Google Scholar 

  20. Xue L, Zhao FQ, Xing XL, Gao HX, Xu SY, Hu RZ. Dissolution properties of 1,3,3-trinitroazetidine (TNAZ) in ethyl acetate and N,N-dimethylformamide. Acta Phy Chim Sin. 2009;25:2413–21.

    CAS  Google Scholar 

  21. Xue L, Zhao FQ, Hu RZ, Gao HX. A simple method to estimate the critical temperature of thermal explosion for energetic materials using nonisothermal DSC. J Energ Mater. 2010;28:17–31.

    Article  CAS  Google Scholar 

  22. Li JZ, Fan XZ, Hu RZ, Zhao FQ, Gao HX. Thermal behavior of copper(II) 4-nitroimidazolate. J Therm Anal Calorim. 2009;96:01–195.

    Article  Google Scholar 

  23. Xu SY, Zhao FQ, Yi JH, Hu RZ, Gao HX, Li SW, Hao HX, Pei Q. Thermal behavior and non-isothermal decomposition reaction kinetics of composite modified double base propellant containing CL-20. Acta Phy Chim Sin. 2008;24:1371–9.

    CAS  Google Scholar 

  24. Arkady MK, Liubov PS. Molar heat capacities of the (water + acetonitrile) mixtures at T = (283.15, 298.15, 313.15, and 328.15) K. J Chem Thermodyn. 2010;42:1209–12.

    Article  Google Scholar 

  25. Dong HS, Zhao FF. Performances of high explosive and its related materials. Beijing: Science Press; 1989.

    Google Scholar 

  26. Dong HS, Hu RZ, Yao P, Zhang XX. Thermograms of energetic materials. Beijing: National Defence Industry Press; 2001.

    Google Scholar 

Download references

Acknowledgements

The financial supports received from the National Natural Science Foundation of China (Grant No. 20573098), and the Science and Technology Foundation of the National Key Lab of Science and Technology on Propellant and Explosive Combustion in China (Grant No. 9140C3501020901) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Qi Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Zhao, FQ., Xing, XL. et al. Thermal behavior of 1,2,3-triazole nitrate. J Therm Anal Calorim 104, 999–1004 (2011). https://doi.org/10.1007/s10973-010-1231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1231-9

Keywords

Navigation