Skip to main content
Log in

Phytochemical identification and in silico elucidation of interactions of bioactive compounds from Citrullus lanatus with androgen receptor towards prostate cancer treatment

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Androgen receptor (AR) is known to play a crucial role in the development and progression of prostate cancer, and compounds that inhibit its activity are regarded as promising for the development of drugs to treat the disease. This study aimed to investigate the AR-inhibiting potential of Citrullus lanatus fruit compounds for prostate cancer drug development. Following HPLC identification, the binding energies, molecular interactions, and pharmacological potentials of the compounds against AR were elucidated using in silico techniques such as, molecular docking, induced-fit docking, molecular dynamics simulation, and ADMET prediction. Some of the compounds found to be present in Citrullus lanatus fruit included flavonoids such as proanthocyanin, naringin, flavan 3 ol, flavonones, naringenin, epicatechin, citrulline, and catechin. Naringenin exhibited the highest docking score in the molecular docking analysis, followed by resveratrol, ribalinidine, and epicatechin. These compounds share a common AR binding site with the standard ligand, dihydrotestosterone (DHT). Some of the compounds showed favorable ADMET profiles, while others showed at least one toxicity potential. The induced-fit docking of naringenin with AR yielded a higher docking score than the initial score obtained from standard docking while preserving stable molecular contacts with the interacting amino acids. Consistent hydrogen bond interactions of naringenin with PHE 764, ASN 705, and THR 877 of AR, including a persistent pi-pi stacking contact with PHE 764, were observed from the molecular dynamic simulation. The Citrullus lanatus compounds, particularly naringenin, may therefore be considered for further research towards the development of drugs for prostate cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the main text of this article.

References

  • Adegboyega AE, Johnson TO, Omale S (2021) Computational modeling of the pharmacological actions of some antiviral agents against SARS-CoV-2. Data Sci COVID-19. https://doi.org/10.1016/B978-0-12-824536-1.00018-6

    Article  Google Scholar 

  • Ahmed A, Ali S, Sarkar FH (2014) Advances in androgen receptor targeted therapy for prostate cancer. J Cell Physiol 229(3):271–276. https://doi.org/10.1002/jcp.24456

    Article  CAS  PubMed  Google Scholar 

  • Allott EH, Masko EM, Freedland SJ (2013) Obesity and prostate cancer: weighing the evidence. Eur Urol 63(5):800–809

    Article  CAS  PubMed  Google Scholar 

  • Alturki NA, Mashraqi MM, Alzamami A, Alghamdi YS, Alharthi AA, Asiri SA et al (2022) In-silico screening and molecular dynamics simulation of drug bank experimental compounds against SARS-CoV-2. Molecules 27(14):4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assefa AD, Hur O-S, Ro N-Y, Lee J-E, Hwang A-J, Kim B-S et al (2020) Fruit morphology, citrulline, and arginine levels in diverse watermelon (Citrullus lanatus) germplasm collections. Plants 9(9):1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balogun TA, Iqbal MN, Saibu OA, Akintubosun MO, Lateef OM, Nneka UC et al (2021) Discovery of potential HER2 inhibitors from Mangifera indica for the treatment of HER2-Positive breast cancer: an integrated computational approach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1975570

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Xu Z, Xu T, Yu B, Zou Q (2015) Diabetes mellitus is associated with elevated risk of mortality amongst patients with prostate cancer: a meta-analysis of 11 cohort studies. Diabetes Metab Res Rev 31(4):336–343. https://doi.org/10.1002/dmrr.2582

    Article  PubMed  Google Scholar 

  • Chakraborty S, Kumar A, Butt NA, Zhang L, Williams R, Rimando AM et al (2016) Molecular insight into the differential anti-androgenic activity of resveratrol and its natural analogs: in silico approach to understand biological actions. Mol Biosyst 12(5):1702–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee A (2011) Efficacy and safety of gonadotropin-releasing hormone agonists used in the treatment of prostate cancer. Drug Healthc Patient Saf. https://doi.org/10.2147/DHPS.S24106

    Article  PubMed  PubMed Central  Google Scholar 

  • Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A (2020) Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 77(1):38–52

    Article  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13

    Article  Google Scholar 

  • Darvas F, Keseru G, Papp A, Dorman G, Urge L, Krajcsi P (2002) In silico and ex silico ADME approaches for drug discovery. Curr Top Med Chem 2(12):1287–1304

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185

    Article  PubMed  Google Scholar 

  • Dong L, Zieren RC, Xue W, de Reijke TM, Pienta KJ (2019) Metastatic prostate cancer remains incurable, why? Asian J Urol 6(1):26–41

    Article  PubMed  Google Scholar 

  • Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:W53–W58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giwa S, Abdullah LC, Adam NM (2010) Investigating “Egusi” (Citrullus colocynthis L.) seed oil as potential biodiesel feedstock. Energies 3(4):607–618

    Article  CAS  Google Scholar 

  • Gleeson PM, Hersey A, Hannongbua S (2011) In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 11(4):358–381

    Article  CAS  PubMed  Google Scholar 

  • Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19(8):722–726

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Chan EO-T, Liu X, Lok V, Ngai CH, Zhang L et al (2023) Global trends of prostate cancer by age, and their associations with gross domestic product (GDP), human development index (HDI), smoking, and alcohol drinking. Clin Genitourin Cancer 21(4):e261–e270

    Article  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220. https://doi.org/10.1126/science.275.5297.218

    Article  CAS  PubMed  Google Scholar 

  • Johnson TO, Adegboyega AE, Iwaloye O, Eseola OA, Plass W, Afolabi B et al (2021) Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J Pharmacol Sci. https://doi.org/10.1016/j.jphs.2021.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson TO, Adegboyega AE, Ojo OA, Yusuf AJ, Iwaloye O, Ugwah-Oguejiofor CJ et al (2022) A Computational approach to elucidate the interactions of chemicals from Artemisia annua targeted toward SARS-CoV-2 main protease inhibition for COVID-19 treatment. Front Med 9:907583

    Article  Google Scholar 

  • Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI et al (2023) Modern drug discovery for inflammatory bowel disease: the role of computational methods. World J Gastroenterol 29:310–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai L, Levenson AS (2011) Combination of resveratrol and antiandrogen flutamide has synergistic effect on androgen receptor inhibition in prostate cancer cells. Anticancer Res 31(10):3323–3330

    CAS  PubMed  Google Scholar 

  • Klein EA, Thompson IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ et al (2011) Vitamin E and the risk of prostate cancer. JAMA 306(14):1549. https://doi.org/10.1001/jama.2011.1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanzarotti E, Defelipe LA, Marti MA, Turjanski AG (2020) Aromatic clusters in protein-protein and protein-drug complexes. J Cheminform 12(1):1–9. https://doi.org/10.1186/s13321-020-00437-4

    Article  CAS  Google Scholar 

  • Lee M-H, Kundu JK, Keum Y-S, Cho Y-Y, Surh Y-J, Choi BY (2014) Resveratrol inhibits IL-6-induced transcriptional activity of AR and STAT3 in human prostate cancer LNCaP-FGC cells. Biomol Ther 22(5):426–430

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  • Lum T, Connolly M, Marx A, Beidler J, Hooshmand S, Kern M et al (2019) Effects of fresh watermelon consumption on the acute satiety response and cardiometabolic risk factors in overweight and obese adults. Nutrients 11(3):595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noori S, Tavirani MR, Deravi N, Rabbani MIM, Zarghi A (2020) Naringenin enhances the anti-cancer effect of cyclophosphamide against mda-mb-231 breast cancer cells via targeting the stat3 signaling pathway. Iran J Pharm Res 19(3):122–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ntie-Kang F (2013) An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus 2(1):1–11

    Article  Google Scholar 

  • Paul Ernest F, Hortense Noëlle MA, Godswill N-N, Thiruvengadam M, Albert Simon O, Hermine Bille N et al (2020) Radiosensitivity of two varieties of watermelon (Citrullus lanatus) to different doses of gamma irradiation. Braz J Bot 43(4):897–905. https://doi.org/10.1007/s40415-020-00659-8

    Article  Google Scholar 

  • Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA (2017) Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol 35(6):867–874. https://doi.org/10.1007/s00345-016-1914-3

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Martínez FD, López-López E, Eurídice Juárez-Mercado K, Medina-Franco JL (2019) Computational drug design methods—current and future perspectives. Silico Drug Des 3:19–44

    Article  Google Scholar 

  • Reiter-Brennan C, Dzaye O, Al-Mallah MH, Dardari Z, Brawner CA, Lamerato LE et al (2021) Fitness and prostate cancer screening, incidence, and mortality: results from the Henry Ford Exercise Testing (FIT) Project. Cancer 127(11):1864–1870. https://doi.org/10.1002/cncr.33426

    Article  CAS  PubMed  Google Scholar 

  • Riyadi PH, Romadhon SID, Kurniasih RA, Agustini TW, Swastawati F et al (2021) SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Spirulina platensis. IOP Conf Ser Earth Environ Sci 890(1):012021

    Article  Google Scholar 

  • Samuel BB, Oluyemi WM, Johnson TO, Adegboyega AE (2021) High-throughput virtual screening with molecular docking, pharmacophore modelling and adme prediction to discover potential inhibitors of plasmodium falciparum lactate dehydrogenase (Pfldh) from compounds of combretaceae family. Trop J Nat Prod Res 5(9):1665–1672

    Article  CAS  Google Scholar 

  • Schrödinger Release (2018) Desmond molecular dynamics system. D. E. Shaw Research, New York

    Google Scholar 

  • Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S (2022) Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules 27(17):5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj D, Muthu S, Kotha S, Siddamsetty RS, Andavar S, Jayaraman S (2021) Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: molecular docking, in-vitro and molecular dynamics study. J Biomol Struct Dyn 39(2):621–634. https://doi.org/10.1080/07391102.2020.1715261

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  • Silk N, Reich J, Sinha R, Chawla S, Geary K, Zhang D (2021) The effects of resveratrol on prostate cancer through targeting the tumor microenvironment. J Xenobiotics 11(1):16–32

    Article  CAS  Google Scholar 

  • Sorokina M, McCaffrey KS, Deaton EE, Ma G, Ordovás JM, Perkins-Veazie PM et al (2021) A catalog of natural products occurring in watermelon—Citrullus lanatus. Front Nutr. https://doi.org/10.3389/fnut.2021.729822/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  • Tan ME, Li J, Xu HE, Melcher K, Yong EL (2015) Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • Teo MY, Rathkopf DE, Kantoff P (2019) Treatment of advanced prostate cancer. Annu Rev Med 70(1):479–499. https://doi.org/10.1146/annurev-med-051517-011947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Dong J (2021) (−)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J Steroid Biochem Mol Biol 211:105906. https://doi.org/10.1016/j.jsbmb.2021.105906

    Article  CAS  PubMed  Google Scholar 

  • Ugoeze KC, Emeka Oluigbo K, Chukwuemeka CB (2020) Phytomedicinal and nutraceutical benefits of the GC-FID quantified phytocomponents of the aqueous extract of Azadirachta indica leaves. J Pharm Pharmacol Res 04(04):149–163

    Google Scholar 

  • Vancauwenberghe E, Noyer L, Derouiche S, Lemonnier L, Gosset P, Sadofsky LR et al (2017) Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF). Mol Carcinog 56(8):1851–1867. https://doi.org/10.1002/mc.22642

    Article  CAS  PubMed  Google Scholar 

  • Vlachostergios PJ, Puca L, Beltran H (2017) Emerging variants of castration-resistant prostate cancer. Curr Oncol Rep 19(5):32. https://doi.org/10.1007/s11912-017-0593-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Weng G, Sun H, Du H, Zhu F, Chen F et al (2019) Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein–protein interactions. Phys Chem Chem Phys 21(35):18958–18969. https://doi.org/10.1039/C9CP04096J

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lu B, He M, Wang Y, Wang Z, Du L (2022) Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. https://doi.org/10.3389/fpubh.2022.811044/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaini NAM, Anwar F, Hamid AA, Saari N (2011) Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Res Int 44(7):2368–2376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors design the work. MDD, VIA and LNE carried out the phytochemical profiling of the fruit extract while TOJ did the in silico analysis. TOJ and MDD interpreted the results and wrote the manuscript. LNE supervised the entire project and write-up. All authors approved the publication of the manuscript.

Corresponding authors

Correspondence to Titilayo Omolara Johnson or Lilian N. Ebenyi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demian, M.D., Amasiorah, V.I., Johnson, T.O. et al. Phytochemical identification and in silico elucidation of interactions of bioactive compounds from Citrullus lanatus with androgen receptor towards prostate cancer treatment. In Silico Pharmacol. 12, 27 (2024). https://doi.org/10.1007/s40203-024-00193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-024-00193-5

Keywords

Navigation