Skip to main content

Advertisement

Log in

In Silico Evaluation of Bioactive Compounds of Citrullus lanatus as Potential Noncovalent KRAS Inhibitors in the Treatment of Human Cancer

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Cancer deaths and other dangerous symptoms associated with it make the search for therapies to combat it a necessity. The use of drugs has been implicated in some debilitating side effects, this makes scientists to look for safer, cheaper, and more effective alternatives. One of such ways is the use of plants/fruits that are rich in bioactive components. Citrullus lanatus is one plant that is grown in almost every part of the world and rich in bioactive secondary metabolites. Kirsten rat sarcoma virus is a very popular oncogene in human tumours that has been targeted in the search for anticancer drugs. This work therefore screened the phytochemicals in Citrullus lanatus against a KRAS receptor via molecular docking. The hit compounds and the co-crystallized ligand of the receptor were subjected to molecular dynamic simulation to determine their stability, modelled and optimized at the DFT/B3LYP/6-311G(d,p) level of theory and also screened for their drug-likeness and ADMET properties. Extra-precision docking revealed that ( ±)-Taxiforin (-7.23 kcalmol−1), (E)-Coniferin (-6.31 kcalmol−1) and Isorhamnetin (-5.71 kcalmol−1) displayed better docking scores than the reference compound (-5.07 kcalmol−1). Molecular dynamics simulation reveals the stability of KRAS-ligand complexes. The molecules have sites to interact with biological systems, as revealed by the DFT results. Pharmacokinetics and drug-likeness revealed that the molecules are promising and safe. Citrullus lanatus should be encouraged for consumption, while the hit compounds should be subjected to further pre-clinical and clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and are available from the corresponding author on reasonable request.

References

  1. Kou F, Wu L, Ren X, Yang L (2020) Chromosome abnormalities: new insights into their clinical significance in cancer. Mol Ther- Oncolytics 17:562–570. https://doi.org/10.1016/j.omto.2020.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muhammad SA, Jaafaru MS, Rabiu S (2023) A meta-analysis on the effectiveness of extracellular vesicles as nanosystems for targeted delivery of anticancer drugs. Mol Pharm 20:1168–1188. https://doi.org/10.1021/acs.molpharmaceut.2c00878

    Article  CAS  PubMed  Google Scholar 

  3. Huang M, Shen A, Ding J, Geng M (2014) Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci 35:41–50. https://doi.org/10.1016/j.tips.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  4. Huang L, Guo Z, Wang F, Fu L (2021) KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 6:1–20. https://doi.org/10.1038/s41392-021-00780-4

    Article  CAS  Google Scholar 

  5. Issahaku AR, Salifu EY, Soliman MES (2023) Inside the cracked kernel: establishing the molecular basis of AMG510 and MRTX849 in destabilising KRASG12C mutant switch I and II in cancer treatment. J Biomol Struct Dyn 41:4890–4902. https://doi.org/10.1080/07391102.2022.2074141

    Article  CAS  PubMed  Google Scholar 

  6. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129:1287–1292. https://doi.org/10.1242/jcs.182873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu P, Wang Y, Li X (2019) Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B 9:871–879. https://doi.org/10.1016/j.apsb.2019.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–772. https://doi.org/10.1038/nrc3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 130:385. https://doi.org/10.1016/j.cell.2007.07.001

    Article  CAS  Google Scholar 

  10. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Sci 277:333–338. https://doi.org/10.1126/science.277.5324.333

    Article  CAS  Google Scholar 

  11. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nat 503:548–551. https://doi.org/10.1038/nature12796

    Article  ADS  CAS  Google Scholar 

  12. FDA Approves LUMAKRASTM (Sotorasib), The First And Only Targeted Treatment For Patients With KRAS G12C-Mutated Locally Advanced Or Metastatic Non-Small Cell Lung Cancer (2018) https://www.amgen.com/newsroom/press-releases/2021/05/fda-approves-lumakras-sotorasib-the-first-and-only-targeted-treatment-for-patients-with-kras-g12cmutated-locally-advanced-or-metastatic-nonsmall-cell-lung-cancer

  13. Mandel H, Levy N, Izkovitch S, Korman SH (2005) Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). J Inherit Metab Dis 28:467–472. https://doi.org/10.1007/s10545-005-0467-1

    Article  CAS  PubMed  Google Scholar 

  14. Itoh T, Ono A, Kawaguchi K, Teraoka S, Harada M, Sumi K, Ando M, Tsukamasa Y, Ninomiya M, Koketsu M, Hashizume T (2018) Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest. Food Chem Toxicol 115:425–435. https://doi.org/10.1016/j.fct.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  15. Ajiboye BO, Shonibare MT, Oyinloye BE (2020) Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J Diabetes Metab Disord 19:343–352. https://doi.org/10.1007/s40200-020-00515-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morimoto R, Yoshioka K, Nakayama M, Nagai E, Okuno Y, Nakashima A, Ogawa T, Suzuki K, Enomoto T, Isegawa Y (2021) Juice of Citrullus lanatus var. citroides (wild watermelon) inhibits the entry and propagation of influenza viruses in vitro and in vivo. Food Sci Nutr 9:544–552. https://doi.org/10.1002/fsn3.2023

    Article  CAS  PubMed  Google Scholar 

  17. Poduri A, Rateri DL, Saha SK, Saha S, Daugherty A (2008) Citrullus lanatus `Sentinel’ (Watermelon) extract reduces atherosclerosis in LDL receptor deficient mice. J Nutr Biochem 23:1–7. https://doi.org/10.1016/j.jnutbio.2012.05.011.Citrullus

    Article  Google Scholar 

  18. Black HS, Boehm F, Edge R, Truscott TG (2020) The benefits and risks of certain dietary carotenoids that exhibit both anti-and pro-oxidative mechanisms—A comprehensive review. Antioxidants 9:1–31. https://doi.org/10.3390/antiox9030264

    Article  CAS  Google Scholar 

  19. Knight J, Caseldine C, Boykoff MT (2010) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 176:267–269

    Google Scholar 

  20. Barkur S, Bankapur A, Chidangil S, Mathur D (2017) Effect of infrared light on live blood cells: Role of β-carotene. J Photochem Photobiol B Biol 171:104–116. https://doi.org/10.1016/j.jphotobiol.2017.04.034

    Article  CAS  Google Scholar 

  21. Schrödinger Release 2023–3: Maestro, Schrödinger (2023)

  22. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinforma 55:351–367

    Article  CAS  Google Scholar 

  23. Balogun TA, Ipinloju N, Abdullateef OT, Moses SI, Omoboyowa DA, James AC, Saibu OA, Akinyemi WF, Oni EA (2021) Computational Evaluation of Bioactive Compounds from Colocasia affinis Schott as a novel EGFR inhibitor for cancer treatment. Cancer Inform 20. https://doi.org/10.1177/11769351211049244

  24. Florová P, Sklenovský P, Banáš P, Otyepka M (2010) Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. J Chem Ther Comput 6:3569–3579. https://doi.org/10.1021/ct1003687

    Article  CAS  Google Scholar 

  25. Issahaku AR, Ibrahim MAA, Mukelabai N, Soliman MES (2023) Intermolecular and dynamic investigation of the mechanism of action of reldesemtiv on fast skeletal muscle troponin complex toward the treatment of impaired muscle function. Protein J 42:263–275. https://doi.org/10.1007/s10930-023-10091-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D, Gaussian 09, Revision C.01, Gaussian, Inc. (2009)

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  28. Ipinloju N, Ibrahim A, da Costa RA, Adigun TB, Olubode SO, Abayomi KJ, Aiyelabegan AO, Esan TO, Muhammad SA, Oyeneyin OE (2023) Quantum evaluation and therapeutic activity of (E)-N-(4-methoxyphenyl)-2-(4-(3-oxo-3-phenylprop-1-en-1-yl) phenoxy)acetamide and its modified derivatives against EGFR and VEGFR-2 in the treatment of triple-negative cancer via in silico approach. J Mol Model 29:159. https://doi.org/10.1007/s00894-023-05543-2

    Article  CAS  PubMed  Google Scholar 

  29. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113:10068–10074. https://doi.org/10.1021/jp904674x

    Article  CAS  PubMed  Google Scholar 

  30. Pérez P, Domingo LR, Aizman A, Contreras R (2007) The electrophilicity index in organic chemistry in: theoretical aspects of chemical reactivity. Theor Asp Chem React 19:139–201

    Article  Google Scholar 

  31. Yang H, Lou C, Sun L, Li L, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069. https://doi.org/10.1093/bioinformatics/bty707

    Article  CAS  PubMed  Google Scholar 

  32. Daina A, Michielin O, Zoete V (2017) SwissADME : a free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Nat Publ Gr 7:42717. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  33. Tripathi S, Muttineni R, Singh S (2013) Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol 334:87–100. https://doi.org/10.1016/j.jtbi.2013.05.014

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Du X, Li Y, Xia Y, Ai S, Liang J, Sang P, Ji X, Liu S (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2):144. https://doi.org/10.3390/ijms17020144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Issahaku AR, Aljoundi A, Soliman MES (2022) Establishing the mutational effect on the binding susceptibility of AMG510 to KRAS switch II binding pocket: computational insights. Informatics Med Unlocked 30:100952. https://doi.org/10.1016/j.imu.2022.100952

    Article  Google Scholar 

  36. Durojaye OA, Okoro NO, Odiba AS, Nwanguma BC (2023) MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference. Sci Rep 13:6972. https://doi.org/10.1038/s41598-023-33024-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barazorda-Ccahuana HL, Valencia DE, Aguilar-Pineda JA, Gómez B (2018) Art v 4 protein structure as a representative template for allergen profilins: homology modeling and molecular dynamics. ACS Omega 3:17254–17260. https://doi.org/10.1021/acsomega.8b02288

    Article  CAS  Google Scholar 

  38. Liu H, Dastidar SG, Lei H, Zhang W, Lee MC, Duan Y (2008) Conformational changes in protein function BT- molecular modeling of proteins. Andreas Kukol Ed. Totowa, NJ: Humana Press. pp. 258–275

  39. Ramalingam A, Kuppusamy M, Sambandam S, Medimagh M, Oyeneyin OE, Shanmugasundaram A, Issaoui N, Ojo ND (2022) Synthesis, spectroscopic, topological, hirshfeld surface analysis, and anti-covid-19 molecular docking investigation of isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Heliyon 8:e10831. https://doi.org/10.1016/j.heliyon.2022.e10831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Omoboyowa DA, Singh G, Fatoki JO, Oyeneyin OE (2022) Computational investigation of phytochemicals from Abrus precatorius seeds as modulators of peroxisome proliferator-activated receptor gamma (PPARγ). J Biomol Struct Dyn 41:5568–5582. https://doi.org/10.1080/07391102.2022.2091657

    Article  CAS  PubMed  Google Scholar 

  41. Ojo ND, Krause RW, Obi-Egbedi NO (2020) Electronic and nonlinear optical properties of 3-(((2-substituted-4-nitrophenyl)imino) methyl)phenol. Comput Theor Chem 1192:113050. https://doi.org/10.1016/j.comptc.2020.113050

    Article  CAS  Google Scholar 

  42. Kumar A, Sambandam S, Ramalingam A, Krishnamoorthy R, Arumugam D, Oyeneyin OE (2022) Synthesis, molecular docking of 3-(2-chloroethyl)-2,6-diphenylpiperidin-4-one: Hirshfeld surface, spectroscopic and DFT based analyses. J Mol Struct 1262:132993. https://doi.org/10.1016/j.molstruc.2022.132993

    Article  CAS  Google Scholar 

  43. Oderinlo OO, Iwegbulam CG, Ekweli OA, Alawode TT, Oyeneyin OE (2022) Acridone alkaloids: in-silico investigation against SARS-CoV-2 main protease. Chem Africa 5:1441–1450. https://doi.org/10.1007/s42250-022-00440-2

    Article  CAS  Google Scholar 

  44. Houngue MTAK, Doco RC, Kpotin GA, Kuevi UA, Simplice K, Wilfried K, Atohoun YGS, Mensah JB (2017) DFT study of chemical reactivity of free radicals ABTS° + and DPPH° by Myricetin, Quercetin and Kaempferol. World Sci News 90:177–188

    CAS  Google Scholar 

  45. Kamaraj RR (2022) Synthesis, Crystal Structure and Theoretical Investigations of (3-(2-Chlorophenyl)-5-Tosyl- 1,3,3a,4,5,9b-Hexahydroisoxazolo[4,3-c]Quinolin-3a- yl)Methanamine. Biointerface Res Appl Chem 12:8394–8405

    CAS  Google Scholar 

  46. Oyeneyin OE, Ojo ND, Ipinloju N, James AC, Agbaffa EB (2022) Investigation of corrosion inhibition potentials of some aminopyridine Schiff bases using density functional theory and monte Carlo simulation. Chem Africa 5:319–332. https://doi.org/10.1007/s42250-021-00304-1

    Article  CAS  Google Scholar 

  47. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091. https://doi.org/10.1021/cr040109f

    Article  CAS  PubMed  Google Scholar 

  48. Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W (2023) Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 63:108093

    Article  CAS  PubMed  Google Scholar 

  49. Dorujaye OA, Ejaz U, Uzoeto HO, Fadahunsi AA, Opabunmi AO, Ekpo DE, Sedzro DM, Idris MO (2023) CSC01 shows promise as a potential inhibitor of the oncogenic G13D mutant of KRAS: an in silico approach. Amino Acids 55:1745–1764. https://doi.org/10.1007/s00726-023-03304-2

    Article  CAS  Google Scholar 

  50. Lipinski CA (2016) Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41. https://doi.org/10.1016/j.addr.2016.04.029

    Article  CAS  PubMed  Google Scholar 

  51. Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B (2021) Drug-Metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes. Clin Pharmacokinet 60:585–601. https://doi.org/10.1007/s40262-021-01001-5

    Article  CAS  PubMed  Google Scholar 

  52. Kazmi SR, Jun R, Yu M, Jung C, Na D (2019) In silico approaches and tools for the prediction of drug metabolism and fate: a review. Comput Biol Med 106:54–64. https://doi.org/10.1016/j.compbiomed.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  53. Kazmi F, Sensenhauser C, Greway T (2019) Characterization of the in vitro inhibitory potential of the oligonucleotide imetelstat on human cytochrome P450 enzymes with predictions of in vivo drug-drug interactions. Drug Metab Dispos 47:9–14. https://doi.org/10.1124/dmd.118.084103

    Article  CAS  PubMed  Google Scholar 

  54. Jia Y, Li B, Yang Z, Li F, Zhao Z, Wei C, Yang X, Jin Q, Liu D, Wei X, Yost J, Lund H, Tang J, Robinson KA (2023) Trends of randomized clinical trials citing prior systematic reviews, 2007–2021. JAMA Netw Open 6:E234219. https://doi.org/10.1001/jamanetworkopen.2023.4219

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fatunde OA, Brown S (2020) The role of CYP450 drug metabolism in precision cardio-oncology enzyme. Int J Mol Sci 21:604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatoba Emmanuel Oyeneyin.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyeneyin, O.E., Ipinloju, N., da Costa, R.A. et al. In Silico Evaluation of Bioactive Compounds of Citrullus lanatus as Potential Noncovalent KRAS Inhibitors in the Treatment of Human Cancer. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00946-x

Keywords

Navigation