Skip to main content
Log in

Removal of sarafloxacin from aqueous solution through Ni/Al-layered double hydroxide@ZIF-8

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, excessive amounts of drugs such as antibiotics have been used to combat COVID-19 and newly discovered viruses. This has led to the production and release of significant amounts of drugs and their metabolites as toxic pollutants in aquatic systems. Therefore, pharmaceutical wastes must be removed efficiently before entering the environment and entering water sources. In this research, Ni/Al-LDH@ZIF-8 nanocomposite was synthesized from layered double hydroxides and metal-organic frameworks and used to remove the antibiotic sarafloxacin (SRF) in the aqueous medium. The work aimed to develop the performance and combine the features of the adsorbent compounds such as high surface area, adjustable porosity, and low-density structure. Different methods implemented to analyze the nanocomposite, such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The experiment utilized the central composite design to evaluate statistics and the response level method to optimize the factors affecting the absorption process. The initial concentration of SRF, adsorbent dose, pH, and contact time were considered in this experiment. The results showed an increase in the removal efficiency of SRF to 97%. Statistical studies showed that the optimal adsorption conditions are as follows: initial concentration of SRF 40 mg·L–1, pH 6.3, adsorbent dose of Ni/Al-LDH@ZIF-8 49 mg, and contact time of 44 min. According to the model of isotherms parameters, the adsorption process is more consistence with the Freundlich model with the absorption capacity of 79.7 mg·g−1. The pseudo-second-order model described the adsorption kinetics data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sets generated and analyzed during the current study are available from the corresponding author upon request.

References

  1. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. 2002;131(1–2):5–17.

    Article  CAS  Google Scholar 

  2. Boxall AB. The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Rep. 2004;5(12):1110–6.

    Article  CAS  Google Scholar 

  3. Halling-Sørensen BNNS, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HH, Jørgensen SE. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere. 1998;36(2):357–93.

    Article  Google Scholar 

  4. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils–a review. J Plant Nutr Soil Sci. 2003;166(2):145–67.

    Article  CAS  Google Scholar 

  5. Citarasu T. Herbal biomedicines: a new opportunity for aquaculture industry. Aquacult Int. 2010;18(3):403–14.

    Article  Google Scholar 

  6. Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci. 2017;115:66–77.

    Article  CAS  Google Scholar 

  7. Tamtam F, Mercier F, Le Bot B, Eurin J, Dinh QT, Clément M, Chevreuil M. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ. 2008;393(1):84–95.

    Article  CAS  Google Scholar 

  8. Yuan SF, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. Sci Total Environ. 2019;653:815–21.

    Article  CAS  Google Scholar 

  9. Kurt A, Mert BK, Özengin N, Sivrioğlu Ö, Yonar T. Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs). Physico-chemical wastewater treatment and resource recovery. 2017;175.

  10. Huang CH, Renew JE, Smeby KL, Pinkston K, Sedlak DL. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J Contemp Water Res Educ. 2011;120(1):4.

    Google Scholar 

  11. Anadón A, Suárez FH, Martínez MA, Castellano V, Martínez M, Ares I, Martínez-Larrañaga MR. Plasma disposition and tissue depletion of difloxacin and its metabolite sarafloxacin in the food producing animals, chickens for fattening. Food Chem Toxicol. 2011;49(2):441–9.

    Article  Google Scholar 

  12. Jiménez-Lozano E, Marqués I, Barrón D, Beltrán JL, Barbosa J. Determination of pKa values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector. Anal Chim Acta. 2002;464(1):37–45.

    Article  Google Scholar 

  13. Alexy R, Kümpel T, Kümmerer K. Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere. 2004;57(6):505–12.

    Article  CAS  Google Scholar 

  14. Kümmerer K. Significance of antibiotics in the environment. J Antimicrob Chemother. 2003;52(1):5–7.

    Article  Google Scholar 

  15. Yu R, Chen L, Shen R, Li P, Shi N. Quantification of ultratrace levels of fluoroquinolones in wastewater by molecularly imprinted solid phase extraction and liquid chromatography triple quadrupole mass. Environ Technol Innov. 2020;19: 100919.

    Article  Google Scholar 

  16. Prabhakaran D, Sukul P, Lamshöft M, Maheswari MA, Zühlke S, Spiteller M. Photolysis of difloxacin and sarafloxacin in aqueous systems. Chemosphere. 2009;77(6):739–46.

    Article  CAS  Google Scholar 

  17. Kusari S, Prabhakaran D, Lamshöft M, Spiteller M. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water. Environ Pollut. 2009;157(10):2722–30.

    Article  CAS  Google Scholar 

  18. Samadi-Maybodi A, Nikou M. Removal of sarafloxacin from aqueous solution by a magnetized metal-organic framework; Artificial neural network modeling. Polyhedron. 2020;179: 114342.

    Article  CAS  Google Scholar 

  19. El-Azazy M, El-Shafie AS, Elgendy A, Issa AA, Al-Meer S, Al-Saad KA. A comparison between different agro-wastes and carbon nanotubes for removal of sarafloxacin from wastewater: kinetics and equilibrium studies. Molecules. 2020;25(22): 5429.

    Article  Google Scholar 

  20. Huang X, Zheng J, Liu C, Liu L, Liu Y, Fan H. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type. Chem Eng J. 2017;308:692–9.

    Article  CAS  Google Scholar 

  21. Yang B, Meng L, Xue N. Removal of five fluoroquinolone antibiotics during broiler manure composting. Environ Technol. 2018;39(3):373–81.

    Article  CAS  Google Scholar 

  22. Darweesh TM, Ahmed MJ. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicol Environ Saf. 2017;138:139–45.

    Article  CAS  Google Scholar 

  23. Yan W, Zhang J, Jing C. Adsorption of Enrofloxacin on montmorillonite: two-dimensional correlation ATR/FTIR spectroscopy study. J Colloid Interface Sci. 2013;390(1):196–203.

    Article  CAS  Google Scholar 

  24. Peng H, Pan B, Wu M, Liu Y, Zhang D, Xing B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity-and structure-controlled process. J Hazard Mater. 2012;233:89–96.

    Article  Google Scholar 

  25. Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by ZIF-8. J Hazard Mater. 2015;282:201–7.

    Article  CAS  Google Scholar 

  26. Ötker HM, Akmehmet-Balcıoğlu I. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J Hazard Mater. 2005;122(3):251–8.

    Article  Google Scholar 

  27. Deng Y. Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: a review. Int J Environ Waste Manag. 2009;4(3–4):366–84.

    Article  CAS  Google Scholar 

  28. Tiwari SC, Bhardwaj A, Nigam KDP, Pant KK, Upadhyayula S. A strategy of development and selection of absorbent for efficient CO2 capture: an overview of properties and performance. Process Saf Environ Prot. 2022;163:244–73.

    Article  CAS  Google Scholar 

  29. Fernández A, Soriano E, López-Carballo G, Picouet P, Lloret E, Gavara R, Hernández-Muñoz P. Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int. 2009;42(8):1105–12.

    Article  Google Scholar 

  30. Kotp YH. Enhancement of industrial effluents quality by using nanocomposite Mg/Al LDH ultrafiltration membranes. J Inorg Organomet Polym Mater. 2020;30(12):5244–60.

    Article  CAS  Google Scholar 

  31. Ramakrishna KR, Viraraghavan T. Dye removal using low cost adsorbents. Water Sci Technol. 1997;36(2–3):189–96.

    Article  CAS  Google Scholar 

  32. Xia C, Huang H, Liang D, Xie Y, Kong F, Yang Q, Fu J, Dou Z, Zhang Q, Meng Z. Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis. Chem Eng J. 2022;443: 136398.

    Article  CAS  Google Scholar 

  33. Gao J, Zheng X, Meng Z, Feng L. Adsorption of ciprofloxacin and tetracycline from wastewater by layered double hydroxides modified vermiculite. J Porous Mater. 2022;29(5):1299–308.

    Article  CAS  Google Scholar 

  34. Halajnia A, Oustan S, Najafi N, Khataee AR, Lakzian A. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl Clay Sci. 2013;80:305–12.

    Article  Google Scholar 

  35. Morimoto K, Tamura K, Iyi N, Ye J, Yamada H. Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. J Phys Chem Solids. 2011;72(9):1037–45.

    Article  CAS  Google Scholar 

  36. Jawad A, Peng L, Liao Z, Zhou Z, Shahzad A, Ifthikar J, Zhao M, Chen Z, Chen Z. Selective removal of heavy metals by hydrotalcites as adsorbents in diverse wastewater: different intercalated anions with different mechanisms. J Clean Prod. 2019;211:1112–26.

    Article  CAS  Google Scholar 

  37. Chen S, Huang Y, Han X, Wu Z, Lai C, Wang J, Deng Q, Zeng Z, Deng S. Simultaneous and efficient removal of cr (VI) and methyl orange on LDHs decorated porous carbons. Chem Eng J. 2018;352:306–15.

    Article  CAS  Google Scholar 

  38. Wang X, Zhou W, Wang C, Chen Z. Cotton fiber-supported layered double hydroxides for the highly efficient adsorption of anionic organic pollutants in water. New J Chem. 2018;42(12):9463–71.

    Article  CAS  Google Scholar 

  39. Wang Y, Zhang L. Improved performance of 3D hierarchical NiAl-LDHs micro-flowers via a surface anchored ZIF-8 for rapid multiple-pollutants simultaneous removal and residues monitoring. J Hazard Mater. 2020;395: 122635.

    Article  CAS  Google Scholar 

  40. Sajid M, Basheer C, Daud M, Alsharaa A. Evaluation of layered double hydroxide/graphene hybrid as a sorbent in membrane-protected stir-bar supported micro-solid-phase extraction for determination of organochlorine pesticides in urine samples. J Chromatogr A. 2017;1489:1–8.

    Article  CAS  Google Scholar 

  41. Zaghouane-Boudiaf H, Boutahala M, Tiar C, Arab L, Garin F. Treatment of 2, 4, 5-trichlorophenol by MgAl–SDBS organo-layered double hydroxides: kinetic and equilibrium studies. Chem Eng J. 2011;173(1):36–41.

    Article  CAS  Google Scholar 

  42. Niknam Shahrak M, Ghahramaninezhad M, Eydifarash M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of cr (VI) ions from aqueous solution. Environ Sci Pollut Res. 2017;24(10):9624–34.

    Article  CAS  Google Scholar 

  43. Zhao Y, Pan Y, Liu W, Zhang L. Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chem Lett. 2015;44(6):758–60.

    Article  CAS  Google Scholar 

  44. Zhang Y, Xie Z, Wang Z, Feng X, Wang Y, Wu A. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans. 2016;45(32):12653–60.

    Article  CAS  Google Scholar 

  45. Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong HK. On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J Mater Sci. 2019;54:5513–27.

    Article  CAS  Google Scholar 

  46. Troyano J, Carné-Sánchez A, Avci C, Imaz I, Maspoch D. Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chem Soc Rev. 2019;48(23):5534–46.

    Article  CAS  Google Scholar 

  47. Khan NA, Jung BK, Hasan Z, Jhung SH. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J Hazard Mater. 2015;282:194–200.

    Article  CAS  Google Scholar 

  48. Jiang JQ, Yang CX, Yan XP. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl Mater Interfaces. 2013;5(19):9837–42.

    Article  CAS  Google Scholar 

  49. Al-Hazmi GH, Adam AMA, El-Desouky MG, El-Bindary AA, Alsuhaibani AM, Refat MS. Efficient adsorption of rhodamine B using a composite of Fe3O4@ zif-8: synthesis, characterization, modeling analysis, statistical physics and mechanism of interaction. Bull Chem Soc Ethiop. 2023;37(1):211–29.

    Article  CAS  Google Scholar 

  50. Kurt A, Mert BK, Özengin N, Sivrioğlu Ö, Yonar T. Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs). Physico-chemical wastewater treatment and resource recovery. 2017;175

  51. Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM. Green composites: a review of material attributes and complementary applications. Compos Part A: Appl Sci Manufac. 2014;56:280–9.

    Article  CAS  Google Scholar 

  52. Liu Y, Pang H, Wang X, Yu S, Chen Z, Zhang P, Chen L, Song G, Alharbi NS, Rabah SO, Wang X. Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J. 2021;406: 127139.

    Article  CAS  Google Scholar 

  53. Hu M, Lou H, Yan X, Hu X, Feng R, Zhou M. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2018;271:68–72.

    Article  CAS  Google Scholar 

  54. Khabazipour M, Anbia M. Process optimization and adsorption modeling using hierarchical ZIF-8 modified with lanthanum and copper for sulfate uptake from aqueous solution: kinetic, isotherm and thermodynamic studies. J Inorg Organomet Polym Mater. 2021;31(6):2401–24.

    Article  CAS  Google Scholar 

  55. Yuan X, Wei Z, Zhang Z, Liu H. Hierarchical coating nanoarchitectonics of Halloysite Nanotube with polydopamine and ZIF-8 for Adsorption of Organic contaminants. J Inorg Organomet Polym Mater 1–10, (2022).

  56. Song P, Tu Y, Shen X, Yuan A, Zhai L, Shah SA. Fabrication of ZIF-8@ SF Linear Composite through directly feeding approach. J Inorg Organomet Polym Mater. 2019;29(6):2083–9.

    Article  CAS  Google Scholar 

  57. Samadi-Maybodi A, Ghezel-Sofla H, BiParva P. Co/Ni/Al-LTH layered triple hydroxides with zeolitic imidazolate frameworks (ZIF-8) as high efficient removal of diazinon from aqueous solution. J Inorg Organomet Polym Mater. 2023;33(1):10–29.

    Article  CAS  Google Scholar 

  58. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem Mater. 2011;23(8):2130–41.

    Article  CAS  Google Scholar 

  59. Şentürk İ, Alzein M. Adsorptive removal of basic blue 41 using pistachio shell adsorbent-performance in batch and column system. Sustainable Chem Pharm. 2020;16: 100254.

    Article  Google Scholar 

  60. Mohammadi SZ, Safari Z, Madady N. Synthesis of Co3O4@ SiO2 core/shell–nylon 6 magnetic nanocomposite as an adsorbent for removal of Congo red from wastewater. J Inorg Organomet Polym Mater. 2020;30(8):3199–212.

    Article  CAS  Google Scholar 

  61. Dinari M, Roghani N. Calcium iron layered double hydroxide/poly (vinyl chloride) nanocomposites: synthesis, characterization and Cd2 + removal behavior. J Inorg Organomet Polym Mater. 2020;30(3):808–19.

    Article  CAS  Google Scholar 

  62. Nikou M, Samadi-Maybodi A. Application of chemometrics into simultaneous monitoring removal efficiency of two food dyes by an amine-functionalized metal–organic framework. J Iran Chem Soc. 2020;17(7):1671–93.

    Article  CAS  Google Scholar 

  63. Guo Y, Zhu Z, Qiu Y, Zhao J. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions. J Hazard Mater. 2012;239:279–88.

    Article  Google Scholar 

  64. Hassan N, Shahat A, El-Didamony A, El-Desouky M, El-Bindary AA. Equilibrium, kinetic and thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8. Moroccan J Chem. 2020;8(3):8–3.

    Google Scholar 

  65. Kefif F, Ezziane K, Bahmani A, Bettahar N, Mayouf S. Evans Blue dye removal from contaminated water on calcined and uncalcined Cu-Al-CO _ 3 Cu-Al-CO 3 layered double hydroxide materials prepared by coprecipitation. Bull Mater Sci. 2019;42:1–11.

    Article  CAS  Google Scholar 

  66. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J. 2017;326:1145–58.

    Article  CAS  Google Scholar 

  67. Pourfaraj R, Kazemi SY, Fatemi SJ, Biparva P. α-and β-CoNi binary hydroxides nanostructures: synthesis, characterization, and application as heterogeneous catalysts. J Solid State Chem. 2018;265:248–56.

    Article  CAS  Google Scholar 

  68. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev. 2007;82(4):591–605.

    Article  Google Scholar 

  69. Babić S, Horvat AJ, Pavlović DM, Kaštelan-Macan M. Determination of pKa values of active pharmaceutical ingredients. TRAC Trends Anal Chem. 2007;26(11):1043–61.

    Article  Google Scholar 

  70. Rahman N, Haseen U. Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of pb(II) by a hybrid inorganic–organic material: polyacrylamide zirconium(IV) iodate. Ind Eng Chem Res. 2014;53(19):8198–207.

    Article  CAS  Google Scholar 

  71. Fu H, Li X, Wang J, Lin P, Chen C, Zhang X, Suffet IM. Activated carbon adsorption of quinolone antibiotics in water: performance, mechanism, and modeling. J Environ Sci. 2017;56:145–52.

    Article  CAS  Google Scholar 

  72. Tan F, Liu M, Ren S. Preparation of polydopamine-coated graphene oxide/Fe3O4 imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water. Sci Rep. 2017;7(1):5735.

    Article  Google Scholar 

  73. Tan F, Sun D, Gao J, Zhao Q, Wang X, Teng F, Quan X, Chen J. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J Hazard Mater. 2013;244:750–7.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by [Abdolraouf Samadi-Maybodi] and [Sahar Abaskhani-Davanlo]. The first draft of the manuscript was written by [Sahar Abaskhani-Davanlo] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Ethics declarations

This section does not apply to our manuscript and is not applicable.

Consent to participate

All the authors whose names are mentioned in the submitted article have contributed significantly to the concept of the work and contributed to the drafting and approval of the published version. They also agree to all aspects of the work in ensuring the accuracy of every part of the work. -

Competing interests

No potential competing interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaskhani Davanlo, S., Samadi-Maybodi, A. Removal of sarafloxacin from aqueous solution through Ni/Al-layered double hydroxide@ZIF-8. J Environ Health Sci Engineer (2024). https://doi.org/10.1007/s40201-024-00891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-024-00891-4

Keywords

Navigation