Skip to main content

Advertisement

Log in

Investigating the effect of ethanolic extract of Commiphora myrrha (Nees) Engl. gum-resin against hepatorenal injury in diabetic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Management of hepatorenal complications in diabetic patients is still a challenge for clinicians. The study aimed to investigate the impacts of ethanolic extract of Commiphora myrrha (Nees) Engl.oleo-gum-resin (EEM) against hepatorenal injury in diabetic rats.

Methods

Diabetes was induced by an intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in adult male Wistar rats (n = 40); whereas, normal control rats (NC, n = 8) were treated with vehicle solution (citrate buffer, i.p.). Diabetic animals were gavaged with 500 mg/kg of metformin (MET500) and different doses of EEM (100, 300, and 500 mg/kg) once daily for 28 days. Diabetic model (DM) and NC groups were treated with normal saline. Various parameters like fasting blood glucose (FBG), plasma insulin, aspartate transaminase (AST), alanine transaminase (ALT), creatinine (Cr), urea, 24-h urine total protein (UTP), urine volume, and hepatorenal histopathology were assessed at the end of the study.

Results

Compared to the NC group, diabetic rats showed marked elevations in FBG, AST, ALT, urea, Cr, UTP, urine volume, and a significant reduction in insulin. Diabetic animals also exhibited severe histopathological alterations in liver and kidney tissues. The EEM treatment could not influence the biochemical and pathological alterations. Treatment with EEM at the dose of 300 mg/kg could slightly ameliorate some pathological alterations (fatty changes and tubular congestion) in hepatic and renal tissues.

Conclusions

These findings demonstrated that EEM treatment at doses up to 500 mg/kg could not effectively slow down the pathological process of hepatorenal damage in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Myrrh:

Commiphora myrrha oleo-gum

EEM:

Ethanolic extract of myrrh

AST:

Aspartate transaminase

ALT:

Alanine transaminase

UTP:

Urine total protein

STZ:

Streptozotocin

i.p.:

Intraperitoneal.

FBG:

fasting blood flucose

NC:

normal control

DMSO:

Dimethylsulfoxide

MET:

Metformin

DM:

Diabetic model

Cr:

Creatinine

PAS:

Periodic acid-Schiff

B.wt:

Body weight

TGF-β1:

Transforming growth factor-Beta1

EGF:

Epidermal growth factor

VEGF:

Vascular endothelial growth factor

References

  1. Herman WH, Petersen M, Kalyani RR, Response to Comment on American Diabetes Association. Standards of medical care in diabetes—2017. Diabetes Care. 2017;40:e94–5. https://doi.org/10.2337/dci17-0007.

    Article  PubMed  Google Scholar 

  2. Pizzorno J. Is the diabetes epidemic primarily due to toxins? Integr Med (Encinitas). 2016;15:8–17.

    Google Scholar 

  3. Bingham M. Elevated glucose levels tied to risks for microvascular complications in prediabetes. Diabetes Care. 2020;43:693–4. https://doi.org/10.2337/dc20-ti04.

    Article  Google Scholar 

  4. Mohamed J, Nafizah AN, Zariyantey A, Budin S. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16:e132-41. https://doi.org/10.18295/squmj.2016.16.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Lee K, Ni Z, He JC. Diabetic kidney disease: challenges, advances, and opportunities. Kidney Dis (Basel). 2020;6:215–25. https://doi.org/10.1159/000506634.

    Article  Google Scholar 

  6. Alhadramy MS. Diabetes and oral therapies: a review of oral therapies for diabetes mellitus. J Taibah Univ Med Sci. 2016;11:317–29. https://doi.org/10.1016/j.jtumed.2016.02.001.

    Article  Google Scholar 

  7. Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev. 2015;115:4719–43. https://doi.org/10.1021/cr5002832.

    Article  CAS  PubMed  Google Scholar 

  8. Laelago T. Herbal medicine use during pregnancy: Benefits and untoward effects. In: Builders, Ph, editors. Herbal Medicine. London: IntechOpen; 2018. https://doi.org/10.5772/intechopen.76896.

  9. Andrade C, Gomes NG, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol. 2020;263:113177. https://doi.org/10.1016/j.jep.2020.113177.

    Article  CAS  PubMed  Google Scholar 

  10. Hassanzadeh-Taheri M, Hosseini M, Hassanpour-Fard M, Ghiravani Z, Vazifeshenas-Darmiyan K, Yousefi S, et al. Effect of turnip leaf and root extracts on renal function in diabetic rats. Orient Pharm Exp Med. 2016;4:279–86. https://doi.org/10.1007/s13596-016-0249-3.

    Article  Google Scholar 

  11. Zarezadeh M, Vazifeshenas-Darmiyan K, Afshar M, Valavi M, Serki E, Hosseini M. Effects of extract of Crocus sativus petal on renal function in diabetic rats. JMUMS. 2017;27:11–24.

    Google Scholar 

  12. Hassanzadeh-Taheri M, Hassanpour-Fard M, Doostabadi M, Moodi H, Vazifeshenas-Darmiyan K, Hosseini M. Co-administration effects of aqueous extract of turnip leaf and metformin in diabetic rats. J Tradit omplement Med. 2018;8:178–83.

    Article  Google Scholar 

  13. Ghiravani Z, Hassanzadeh-Taheri M, Hassanzadeh-Taheri M, Hosseini M. Internal septum of walnut kernel: a neglected functional food. RJP. 2020;7:81–92. https://doi.org/10.22127/rjp.2020.203451.1522.

    Article  CAS  Google Scholar 

  14. Nomicos EY. Myrrh: medical marvel or myth of the magi? Holist Nurs Pract. 2007;21:308–23. https://doi.org/10.1097/01.hnp.0000298616.32846.34.

    Article  PubMed  Google Scholar 

  15. Moein E, Hajimehdipoor H, Hamzeloo-Moghadam M, Choopani R, Toliyat T. Review of an aloe-based formulation used in Iranian traditional medicine. Jundishapur J Nat Pharm Prod. 2016;11:e40193. https://doi.org/10.17795/jjnpp-40193.

    Article  CAS  Google Scholar 

  16. Vafaei H, Ajdari S, Hessami K, Hosseinkhani A, Foroughinia L, Asadi N, Faraji A, Abolhasanzadeh S, Bazrafshan K, Roozmeh S. Efficacy and safety of myrrh in patients with incomplete abortion: a randomized, double-blind, placebo-controlled clinical study. BMC Complement Med Ther. 2020;20:145.

    Article  CAS  Google Scholar 

  17. Shin JY, Che DN, Cho BO, Kang HJ, Kim J, Jang SI. Commiphora myrrha inhibits itchassociated histamine and IL31 production in stimulated mast cells. Exp Ther Med. 2019;18:1914–20. https://doi.org/10.3892/etm.2019.7721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sotoudeh R, Mousa-Al-Reza Hadjzadeh ZG, Aghaei A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J Phytomed. 2019;9:454–64. https://doi.org/10.22038/ajp.2019.12721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hassanzadeh-Taheri M, Hosseini M, Dorranipour D, Afshar M, Moodi H, Salimi M. The oleo-gum-resin of Commiphora myrrha ameliorates male reproductive dysfunctions in streptozotocin-induced hyperglycemic rats. Pharm Sci. 2019;25:294–302. https://doi.org/10.15171/PS.2019.49.

    Article  Google Scholar 

  20. Kiani Z, Hassanpour-Fard M, Asghari Z, Hosseini M. Experimental evaluation of a polyherbal formulation (Tetraherbs): antidiabetic efficacy in rats. Comp Clin Path. 2018;27(6):1437–45. https://doi.org/10.1007/s00580-018-2755-9.

    Article  CAS  Google Scholar 

  21. Pwaniyibo SF, Teru PA, Samuel NM, Jahng WJ. Anti-diabetic effects of Ficus Asperifolia in Streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2020;19:605–16.

    Article  CAS  Google Scholar 

  22. Hassanzadeh-Taheri M, Hosseini M. Comments on “The improvement effects of Gordonia bronchialis on male fertility of rats with diabetes mellitus induced by Streptozotocin". Pharm Sci. 2020;26:93–5. https://doi.org/10.34172/ps.2019.60.

    Article  Google Scholar 

  23. Rehman R, Abidi SH, Alam F. Metformin, Oxidative stress, and infertility: a way forward. Front Physiol. 2018;9:1722.

    Article  Google Scholar 

  24. Ahmad A, Raish M, Ganaie MA, Ahmad SR, Mohsin K, Al-Jenoobi FI, et al. Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation of pro inflammatory cytokines and related genes. Pharm Biol. 2015;53:1759–67. https://doi.org/10.3109/13880209.2015.1005754.

    Article  PubMed  Google Scholar 

  25. Orabi SH, Al-Sabbagh ES, Khalifa HK, Mohamed MAE-G, Elhamouly M, Gad-Allah SM, et al. Commiphora myrrha resin alcoholic extract ameliorates high fat diet induced obesity via regulation of UCP1 and adiponectin proteins expression in rats. Nutrients. 2020;12:803. https://doi.org/10.3390/nu12030803.

    Article  CAS  PubMed Central  Google Scholar 

  26. Hassanzadeh-Taheri M, Hassanzadeh‐Taheri M, Jahani F, Hosseini M. Effects of yoghurt butter oils on rat plasma lipids, haematology and liver histology parameters in a 150‐day study. Int J Dairy Technol. 2018;71:140–8. https://doi.org/10.1111/1471-0307.12419.

    Article  CAS  Google Scholar 

  27. Hassanzadeh-Taheri M, Hosseini M, Salimi M, Moodi H, Dorranpour D. Acute and sub-acute oral toxicity evaluation of Astragalus hamosus seedpod ethanolic extract in Wistar rats. Pharm Sci. 2018;24:23–30. https://doi.org/10.15171/PS.2018.05.

    Article  Google Scholar 

  28. Moodi H, Hosseini M, Abedini MR, Hassanzadeh-Taheri M, Hassanzadeh-Taheri M. Ethanolic extract of Iris songarica rhizome attenuates methotrexate-induced liver and kidney damages in rats. Avicenna J Phytomed. 2020;10:372–83. https://doi.org/10.22038/ajp.2019.14084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hassanzadeh-Taheri M, Hassanzadeh-Taheri M, Jahani F, Erfanian Z, Moodi H, Hosseini M. The impact of long-term consumption of diets enriched with olive, cottonseed or sesame oils on kidney morphology: A stereological study. An Acad Bras Cienc. 2019;91:e20180855. https://doi.org/10.1590/0001-3765201920180855.

    Article  CAS  PubMed  Google Scholar 

  30. Zafar M, Naqvi SN-u-H. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28:135–42. https://doi.org/10.4067/S0717-95022010000100019.

    Article  Google Scholar 

  31. AL-Yahya A. Interaction Between myrrh and Glibenclamide on organ damage in diabetic rats, a morphological study. Asian J Biol Sci. 2016;9:41–6. https://doi.org/10.3923/ajbs.2016.41.46.

    Article  CAS  Google Scholar 

  32. Ghiravani Z, Hosseini M, Taheri MMH, Fard MH, Abedini MR. Evaluation of hypoglycemic and hypolipidemic effects of internal septum of walnut fruit in alloxan-induced diabetic rats. Afr J Tradit Complement Altern Med. 2016;13(2):94–100. https://doi.org/10.4314/ajtcam.v13i2.12.

    Article  CAS  Google Scholar 

  33. Hoshyar R, Sebzari A, Balforoush M, Valavi M, Hosseini M. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. J Complement Integr Med. 2020. https://doi.org/10.1515/jcim-2019-0201.

    Article  Google Scholar 

  34. Ramesh B, Karuna R, Sreenivasa RS, Haritha K, Sai MD, Sasis BRB, et al. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012;2:895–900.

    Article  CAS  Google Scholar 

  35. Omer SA, Al-Dogmi AM. Toxicologic, hypoglycaemic and hypolipidemic effects of ethanolic and ether extracts of Commiphora molmol from Saudi Arabia. Biomed Res. 2018;29:2300–6.

    Article  CAS  Google Scholar 

  36. Omer SA, Adam SE. Toxicity of Commiphora myrrha to goats. Vet Hum Toxicol. 1999;41(5):299–301.

    CAS  PubMed  Google Scholar 

  37. Motaharifard MS, Effatpanah M, Nejatbakhsh F. Nocturnal enuresis in children and its herbal remedies in medieval persia: a narrative review. J Pediatr Rev. 2020;8:15–22. https://doi.org/10.32598/jpr.8.1.15.

    Article  Google Scholar 

  38. AL-Mosawy AN, Hatroosh SJ. Evaluation of effectiveness of myrrh gum extract on some biochemical and histological parameters in male rats induced Chronic Renal Failure (CRF). Plant Arch. 2019;1:1711–7.

    Google Scholar 

  39. Mahmoud AM, Germoush MO, Al-Anazi KM, Mahmoud AH, Farah MA, Allam AA. Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomed Pharmacother. 2018;106:499–509. https://doi.org/10.1016/j.biopha.2018.06.171.

    Article  CAS  PubMed  Google Scholar 

  40. Hosseinkhani A, Ghavidel F, Mohagheghzadeh A, Zarshenas MM. Analysis of six populations of Commiphora myrrha (Nees) Engl. oleo-gum resin. Trends Pharm Sci. 2017;3:7–12.

    CAS  Google Scholar 

  41. Rizwan AS, Al-Ghadeer AR, Ali R, Qamar W, Aljarboa S. Analysis of inorganic and organic constituents of myrrh resin by GC–MS and ICP-MS: An emphasis on medicinal assets. Saudi Pharm J. 2017;25:788–94. https://doi.org/10.1016/j.jsps.2016.10.011.

    Article  Google Scholar 

  42. Morteza-Semnani K, Saeedi M. Constituents of the essential oil of Commiphora myrrha (Nees) Engl. var. molmol. JEOR. 2003;15:50-51. https://doi.org/10.1080/10412905.2003.9712264.

  43. Hanus LO, Rezanka T, Dembitsky VM, Moussaieff A. Myrrh-Commiphora chemistry. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149:3–28. https://doi.org/10.5507/bp.2005.001.

    Article  CAS  PubMed  Google Scholar 

  44. Dolara P, Corte B, Ghelardini C, Pugliese AM, Cerbai E, Menichetti S, Nostro AL. Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med. 2000;66:356–8. https://doi.org/10.1055/s-2000-8532.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Farrokhfall for helping us in insulin assay test.

Funding

This work was partially supported by Birjand University of Medical Sciences (Grants No.:455159).

Author information

Authors and Affiliations

Authors

Contributions

M.HT and M.H conceived the idea of research and designed the study. M.S performed the animal experiments. K.V-D and M.M performed biochemical and pathological tests. M.H analyzed the data and wrote the manuscript draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehran Hosseini.

Ethics declarations

Ethics approval and consent to participate

All study protocols were approved by the Birjand University of Medical Sciences Ethics Committee (permit code: Ir.bums.REC.1396.16).

Consent for publication

Not applicable.

Conflict of interest

All authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Taheri, M., Salimi, M., Vazifeshenas-Darmiyan, K. et al. Investigating the effect of ethanolic extract of Commiphora myrrha (Nees) Engl. gum-resin against hepatorenal injury in diabetic rats. J Diabetes Metab Disord 20, 1573–1581 (2021). https://doi.org/10.1007/s40200-021-00904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00904-1

Keywords

Navigation