Skip to main content
Log in

Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Different amounts of Fe (0.005, 0.01, 0.03, 0.05, and 0.07 wt%) were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading (170 °C, holding time of 0, 250, 500, and 750 h). The results show that during isothermal aging at 170 °C, the average shear force of all solder joints decreases with increasing aging time, while the average fracture energy first increases and then decreases, reaching a maximum at 500 h. Minor Fe doping could both increase shear forces and related fracture energy, with the optimum Fe doping amount being 0.03 wt% within the entire aging range. This is because the doping Fe reduces the undercooling of the SAC305 alloy, resulting in the microstructure refining of solder joints. This in turn causes the microstructure changing from network structure (SAC305 joint: eutectic network + β-Sn) to a single matrix structure (0.03Fe-doped SAC305 joint: β-Sn matrix + small compound particles). Specifically, Fe atoms can replace some Cu in Cu6Sn5 (both inside the solder joint and at the interface), and then form (Cu,Fe)6Sn5 compounds, resulting in an increase in the elastic modulus and nanohardness of the compounds. Moreover, the growth of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC) layer are inhibited by Fe doping even after the aging time prolonging, and Fe aggregates near the interface compound to form FeSn2. This study is of great significance for controlling the growth of interfacial compounds, stabilizing the microstructures, and providing strengthening strategy for solder joint alloy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

Data and Code Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K.N. Tu, C. Chen, H.M. Chen (eds.), Electronic Packaging Science and Technology (Wiley, Hoboke USA, 2021)

    Google Scholar 

  2. X. Wang, L. Zhang, M. Li, J. Mater. Sci. Mater. Electron. 33, 2259 (2021)

    Article  CAS  Google Scholar 

  3. P. Lall, V. Yadav, J. Suhling, D. Locker, Reliability of Leadfree Solders in High Temperature Vibration in Automotive Environments. In: Paper presented at the 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 28–31 May 2019

  4. Y.L. Xu, J.W. Xian, S. Stoyanov, C. Bailey, R.J. Coyle, C.M. Gourlay, F.P.E. Dunne, Int. J. Plast. 155, 103308 (2022)

    Article  CAS  Google Scholar 

  5. H. Vafaeenezhad, S.H. Seyedein, M.R. Aboutalebi, A.R. Eivani, O. Nikan, Microelectron. Eng. 207, 55 (2019)

    Article  CAS  Google Scholar 

  6. S.M. Xue, S.Q. Zhou, X.J. Wang, X.H. Zeng, Z.Q. Liu, Microstructure coarsening of high-temperature Sn-Pb solder joint in IGBT modules of high-speed trains. In: Paper presented at the 23rd International Conference on Electronic Packaging Technology, Dalian, China, 10–13 Aug 2022

  7. X.J. Wang, Q.S. Zhu, Z.G. Wang, J.K. Shang, Acta Metall. Sin. 45, 912 (2019)

    Google Scholar 

  8. N. Hou, J.W. Xian, A. Sugiyama, H. Yasuda, C.M. Gourlay, Metall. Mater. Trans. A 54, 909 (2023)

    Article  CAS  Google Scholar 

  9. Y. Cui, J.W. Xian, A. Zois, K. Marquardt, H. Yasuda, C.M. Gourlay, Acta Mater. 249, 118831 (2023)

    Article  CAS  Google Scholar 

  10. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, M.B.A. Bashir, N.M. Sharif, M.H. Elsheikh, J. Alloy. Compd. 622, 184 (2015)

    Article  CAS  Google Scholar 

  11. Y. Zhong, W. Liu, C.Q. Wang, X.J. Zhao, J.F.J.M. Caers, Mater. Sci. Eng. A 652, 264 (2016)

    Article  CAS  Google Scholar 

  12. S. Tan, J. Han, F. Guo, J. Electron. Mater. 47, 4156 (2018)

    Article  CAS  Google Scholar 

  13. H.B. Xu, F. Liu, L. Zhou, H.Y. Zhao, M.Y. Li, Microelectron. Reliab. 110, 113623 (2020)

    Article  CAS  Google Scholar 

  14. C.M. Li, S.J. Chen, S.S. Cai, J.B. Peng, X.J. Wang, Y.W. Wang, J. Iron. Steel Res. Int. 30, 1650 (2023)

    Article  CAS  Google Scholar 

  15. L. Pradeep, C. Padmanava, Evolution of Fatigue Reliability of UF-Substrate Interfaces under High Temperature Exposure. In: Paper presented at the 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 31 May–03 June 2022

  16. P. Paufler (ed.), Mechanical Behavior of Materials (McGraw-Hill, Singapore, 1990)

    Google Scholar 

  17. X.L. Wu, J.W. Wu, X.J. Wang, J. Yang, M. Xia, B. Liu, J. Mater. Sci. 55, 3092 (2019)

    Article  Google Scholar 

  18. S.A. Belyakov, T. Nishimura, T. Akaiwa, K. Sweatman, C.M. Gourlay, Role of Bi in microstructure formation of Sn-Cu-Ni based BGAs on Cu metallizations. In: Paper presented at the International Conference on Electronics Packaging, Yamagata, Japan, 19–22 April 2017

  19. P. Sungkhaphaitoon, T. Plookphol, Metall. Mater. Trans. A 49, 652 (2017)

    Article  Google Scholar 

  20. L.Y. Gao, Y.X. Luo, P. Wan, Z.Q. Liu, Mater Charact 178, 111195 (2021)

    Article  CAS  Google Scholar 

  21. J.W. Xian, M.A.A.M. Salleh, S.A. Belyakov, T.C. Su, G. Zeng, K. Nogita, H. Yasuda, C.M. Gourlay, Intermetallics 102, 34 (2018)

    Article  CAS  Google Scholar 

  22. T. Lu, D. Yi, H. Wang, X. Tu, B. Wang, J. Alloy. Compd. 781, 633 (2019)

    Article  CAS  Google Scholar 

  23. L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, H. Ye, J. Alloy. Compd. 510, 38 (2012)

    Article  CAS  Google Scholar 

  24. L. Zhang, Z.Q. Liu, J. Mater. Sci. Mater. Electron. 31, 2466 (2020)

    Article  CAS  Google Scholar 

  25. G.S. Xiao, Y.H. Ma, X.K. Ji, T.J. Wang, X.F. Shu, E.Q. Liu, Mech. Mater. 160, 103985 (2021)

    Article  Google Scholar 

  26. L. Liu, L. Shi, J. Peng, B. Jiang, S. Liu, C. Liu, Z. Chen, Mater. Res. Bull. 152, 111854 (2022)

    Article  CAS  Google Scholar 

  27. H. Gao, F. Wei, Y. Sui, J. Qi, Mater. Des. 174, 107794 (2019)

    Article  CAS  Google Scholar 

  28. P. Choudhury, M. Ribas, R. Pandher, A. Kumar, S. Mukherjee, S. Sarkar, B. Singh, Development of lead-free alloys with ultra-high thermo-mechanical reliability. In: Paper presented at the Proc. of SMTA International, Chicago, 27 Sep–1 Oct 2015

  29. T. Hurtony, O. Krammer, B. Illes, G. Harsanyi, D. Busek, K. Dusek, Materials 13, 5251 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. Kanlayasiri, R. Kongchayasukawat, Trans. Nonferrous Met. Soc. China 28, 1166 (2018)

    Article  CAS  Google Scholar 

  31. S.A. Belyakov, T. Nishimura, K. Sweatman, K. Nogita, C.M. Gourlay, Influence of Bi additions on the distinct β-Sn grain structure of Sn-0.7Cu-0.05Ni-xBi (x = 0–4 wt%).. In: Paper presented at the International Conference on Electronics Packaging, Hokkaido, Japan, 20–22 April 2016

  32. S.A. Belyakov, J. Xian, G. Zeng, K. Sweatman, T. Nishimura, T. Akaiwa, C.M. Gourlay, J. Mater. Sci. Mater. Electron. 30, 378 (2019)

    Article  CAS  Google Scholar 

  33. Y.W. Wang, C.R. Kao, The effects of minor Fe, Co, and Ni additions to lead-free solders on the thickness of Cu3Sn at the interface. In: Paper presented at the 2th International Microsystems, Packaging, Assembly and Circuits Technology, Taipei, Taiwan, 1–3 Oct 2007

  34. H. Nishikawa, M.H. Roh, A. Fujita, N. Kamada, Effect of bonding temperature on shear strength of joints using micro-sized Ag particles for high temperature packaging technology. In: Paper presented at the 22nd European Microelectronics and Packaging Conference & Exhibition, Pisa, Italy 16–19 Sept. 2019

  35. A.J. Rafanelli, Addressing the challenges of Pb-free technology in high performance(aerospace/defense) products. In: Paper presented at the SMTA New England Expo and Technical Forum, Worcester, MA 16 November 2017

  36. B. Ali, M.F.M. Sabri, S.M. Said, N.L. Sukiman, I. Jauhari, N. Soin, J. Mater. Sci. Mater. Electron. 28, 7277 (2017)

    Article  CAS  Google Scholar 

  37. Y.W. Wang,C.R. Kao, Minor Fe, Co, and Ni additions to SnAgCu solders for retarding CU3Sn growth. In: Paper presented at the 10th International Conference on Electronic Materials and Packaging, Taipei, Taiwan, 22–24 October 2008

  38. M.Y. Xiong, L. Zhang, J. Mater. Sci. 54, 1741 (2018)

    Article  Google Scholar 

  39. I.E. Anderson, J.L. Harringa, J. Electron. Mater. 35, 94 (2006)

    Article  CAS  Google Scholar 

  40. A. Kantarcıoğlu, Y.E. Kalay, Mater. Sci. Eng. A 593, 79 (2014)

    Article  Google Scholar 

  41. M.H. Mahdavifard, M.F.M. Sabri, S.M. Said, S. Rozali, Microelectron. Eng. 208, 29 (2019)

    Article  CAS  Google Scholar 

  42. B. Ali, M.F.M. Sabri, I. Jauhari, N.L. Sukiman, Microelectron. Reliab. 63, 224 (2016)

    Article  CAS  Google Scholar 

  43. S.H. Kim, J. Yu, Scr. Mater. 69, 254 (2013)

    Article  CAS  Google Scholar 

  44. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, F.X. Che, J. Electron. Mater. 42, 470 (2013)

    Article  CAS  Google Scholar 

  45. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, J. Electron. Mater. 41, 2631 (2012)

    Article  CAS  Google Scholar 

  46. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Microelectron. Reliab. 52, 2701 (2012)

    Article  CAS  Google Scholar 

  47. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Mater. Sci. Eng. A 551, 160 (2012)

    Article  CAS  Google Scholar 

  48. H. Fallahi, M.S. Nurulakmal, A.F. Arezodar, J. Abdullah, Mater. Sci. Eng. A 553, 22 (2012)

    Article  CAS  Google Scholar 

  49. Y.W. Wang, Y.W. Lin, C.T. Tu, C.R. Kao, J. Alloy. Compd. 478, 121 (2009)

    Article  CAS  Google Scholar 

  50. J.W. Xian, S.A. Belyakov, C.M. Gourlay, J. Electron. Mater. 50, 786 (2020)

    Article  Google Scholar 

  51. I. Dutta, P. Kumar, G. Subbarayan, JOM 61, 29 (2009)

    Article  CAS  Google Scholar 

  52. L. Xu, J.H.L. Pang, J. Electron. Mater. 35, (2006)

  53. F. Emadi, V. Vuorinen, S. Mertin, K. Widell, M. Paulasto-Kröckel, J. Alloy. Compd. 929, 167228 (2022)

    Article  CAS  Google Scholar 

  54. F. Emadi, V. Vuorinen, G. Ross, M. Paulasto-Kröckel, Mater. Sci. Eng. A 881, 145398 (2023)

    Article  CAS  Google Scholar 

  55. M. Kerr, N. Chawla, Acta Mater. 52, 4527 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yunnan Fundamental Research Projects (No. 202301BC070001-001) funded by the Yunnan Provincial Department of Science and Technology; the Yunnan Provincial Science and Technology Plan Project (No. 202005AF150045); the Jiangsu Province Industry-University-Research Cooperation Project (No. BY2022832) funded by the Jiangsu Provincial Department of Science and Technology; the National Natural Science Foundation of China (No. 52275339). The authors thank Professor H.L. Zhou from Jiangsu University of Science and Technology for her support and assistance in sample production and circuit board design.

Author information

Authors and Affiliations

Authors

Contributions

Quanzheng Li involved in original draft, data curation, formal analysis, writing—original draft. Chengming Li involved in experiment, original draft, data curation. Xiaojing Wang involved in writing—review and editing, discussion, conceptualization. Shanshan Cai involved in writing—review and editing, discussion. Jubo Peng involved in supervision, writing—review. Shujin Chen involved in review and editing. Jiajun Wang involved in DSC test, Xiaohong Yuan involved in valuable discussion and analysis.

Corresponding authors

Correspondence to Xiaojing Wang or Shanshan Cai.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Experiments in this paper do not involve in any vivo testing on animal subjects, human subjects, or human tissue.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, C., Wang, X. et al. Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging. Acta Metall. Sin. (Engl. Lett.) (2024). https://doi.org/10.1007/s40195-024-01691-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40195-024-01691-3

Keywords

Navigation