Skip to main content
Log in

Conductivity and Oxidation Behavior of Fe-16Cr Alloy as Solid Oxide Fuel Cell Interconnect Under Long-Stability and Thermal Cycles

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Conductivity and oxidation behavior of Fe-16Cr alloy were investigated under long-term stability operation at 750 °C and thermal cycles from room temperature to 750 °C. The results showed that the area specific resistance (ASR) of Fe-16Cr alloy increased over time and reached about 56.29 mΩ cm2 after 40,000 h of long-term stability operation at 750 °C by theoretical calculation. The ASR of Fe-16Cr remained about 11 mΩ cm2 after 52 thermal cycles from room temperature to 750 °C. The analysis of structure showed that the oxidized phase on the surface of Fe-16Cr was mainly composed of Cr2O3 and FeCr2O4 spinel phase under long-term stability operation at 750 °C. While the Cr2O3 phase was mainly observed on the surface of Fe-16Cr alloy after 52 thermal cycles, the oxidation rates of Fe-16Cr alloy were 0.0142 μm h−1 and 0.06 μm cycle−1 under long-term stability operation and under thermal cycle, respectively. The property of Fe-16Cr alloy with 2.6 mm thickness met the lifespan requirement of interconnect for solid oxide fuel cell (SOFC) stacks. The Cr element all diffused onto oxidation surface, indicating that it was necessary to spray a coating on the surface to avoid poisoning cell cathode of SOFCs. Two 2-cell stacks were assembled and tested to verify the properties of Fe-16Cr alloy as SOFC interconnect under long-term stability operation and thermal cycle condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Kurokaw, K. Kawamur, T. Maruyam, Solid State Ionics 168, 13 (2004)

    Article  Google Scholar 

  2. J.W. Wu, X.B. Liu, J. Mater. Sci. Technol. 26, 293 (2010)

    Article  CAS  Google Scholar 

  3. H. Ullmann, N. Trofimenko, F. Tietz, D. Stver, A. Ah-mad-Khanlou, Solid State Ionics 138, 79 (2000)

    Article  CAS  Google Scholar 

  4. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, H. Kishimoto, J. Alloys Compd. 452, 41 (2008)

    Article  CAS  Google Scholar 

  5. K. Huang, P.Y. Hou, J.B. Goodenough, Mater. Res. Bull. 36, 81 (2001)

    Article  CAS  Google Scholar 

  6. G. Cabouro, G. Caboche, S. Chevalier, P. Piccardo, J. Power Sources 156, 39 (2006)

    Article  CAS  Google Scholar 

  7. P. Kofstad, R. Bredesen, Solid State Ionics 52, 69 (1992)

    Article  CAS  Google Scholar 

  8. T. Horita, Y.P. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Power Sources 118, 35 (2003)

    Article  CAS  Google Scholar 

  9. T. Ueda, H. Ohno, A. Toji, Switzerland 1, 281 (2002)

    Google Scholar 

  10. J.P. Albellan, F. Tietz, V. Shemet, A. Gil, Switzerland 1, 248 (2002)

    Google Scholar 

  11. T. Horita, Y.P. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Electrochem. Soc. 150, 243 (2003)

    Article  Google Scholar 

  12. J. Pu, J. Li, B. Hua, G.Y. Xie, J. Power Sources 158, 354 (2006)

    Article  Google Scholar 

  13. W.A. Meulenberg, S. Uhlenbruek, E. Wssel, J. Mater. Sci. 38, 507 (2003)

    Article  CAS  Google Scholar 

  14. P. Piccardo, P. Gannon, S. Chevalier, M. Viviani, A. Barbucci, G. Caboche, R. Amendola, S. Fontana, Surf. Coat. Technol. 202, 1221 (2007)

    Article  CAS  Google Scholar 

  15. M.F. Han, S.P. Peng, Z.L. Wang, Z.B. Yang, X. Chen, J. Power Sources 164, 278 (2007)

    Article  CAS  Google Scholar 

  16. X.H. Deng, P. Wei, M. Bateni, A. Petric, J. Power Sources 160, 1225 (2006)

    Article  CAS  Google Scholar 

  17. Y. Zhang, P. Guo, Y. Shao, Y.B. Lai, J.Q. Zhang, J. Alloys Compd. 680, 685 (2016)

    Article  CAS  Google Scholar 

  18. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, J. Power Sources 171, 652 (2007)

    Article  CAS  Google Scholar 

  19. W.B. Guan, H.J. Zhai, L. Jin, T.S. Li, W.G. Wang, Fuel Cells 1, 445 (2011)

    Article  Google Scholar 

  20. W.B. Guan, L. Jin, X. Ma, W.G. Wang, Fuel Cells 12, 1085 (2012)

    Article  CAS  Google Scholar 

  21. W.B. Guan, G.L. Wang, X.D. Zhou, J. Power Source 315, 169 (2017)

    Article  Google Scholar 

  22. W.Z. Zhu, S.C. Devi, Mater. Sci. Eng. 348, 227 (2003)

    Article  Google Scholar 

  23. K. Huang, P.Y. Hou, J.B. Goodenough, Solid State Ionics 129, 237 (2000)

    Article  CAS  Google Scholar 

  24. H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics 168, 413 (2004)

    Article  Google Scholar 

  25. S.W. Sofie, P. Gannon, V. Gorokhovsky, J. Power Sources 191, 465 (2009)

    Article  CAS  Google Scholar 

  26. Z. Lu, J.H. Zhu, Electrochem. Solid-State Lett. 10, 179 (2007)

    Article  Google Scholar 

  27. W.A. Meulenberg, O. Teller, U. Flesch, H.P. Buchkremer, D. Stover, J. Mater. Sci. 36, 3189 (2001)

    Article  CAS  Google Scholar 

  28. S.P. Jiang, S. Zhang, Y.D. Zhen, J. Mater. Res. 20, 747 (2005)

    Article  CAS  Google Scholar 

  29. Y. Niu, J.X. Song, F. Gesmundo, G. Farne, Oxid. Met. 55, 291 (2001)

    Article  CAS  Google Scholar 

  30. H.W. Abernathy, E. Koep, C. Compson, Z. Cheng, M. Liu, J. Phys. Chem. C 112, 13299 (2008)

    Article  CAS  Google Scholar 

  31. C.J. Fu, K.N. Sun, X.B. Chen, D.R. Zhou, Electrochim. Acta 54, 7305 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key R&D Program from the Ministry of Science and Technology of China (No. 2018YFB1502600), the Ningbo Major Special Projects of the Plan “Science and Technology Innovation 2025 ” (No. 2019B10043), the Science and Technology Project of Zhejiang Energy Group Co., Ltd. (No. znkj-2018-008), and the Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanbing Guan.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chen, Q., Sang, J. et al. Conductivity and Oxidation Behavior of Fe-16Cr Alloy as Solid Oxide Fuel Cell Interconnect Under Long-Stability and Thermal Cycles. Acta Metall. Sin. (Engl. Lett.) 34, 668–674 (2021). https://doi.org/10.1007/s40195-020-01147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01147-4

Keywords

Navigation