Skip to main content
Log in

Oxidation Behavior and Electrical Properties of De-siliconized AISI 430 Alloy with Mn1.5Co1.5O4 Coating for Solid Oxide Fuel Cell Interconnect

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of de-siliconization on the oxidation behavior of AISI 430 stainless steel used for solid oxide fuel cell interconnect application was investigated. De-siliconization treatment was conducted via heating steel parts in an H2 environment. The de-siliconized substrates were then coated with a Mn1.5Co1.5O4 spinel coating, using wet spray method. For comparison, a similar coating process was applied on the as-received AISI 430 stainless steel specimens. Oxidation kinetics of coated interconnects were evaluated at 700, 800 and 900 °C in air. Results showed that the de-siliconization surface treatment decreased oxidation rates, with kinetic rates (g2 cm−4 s−1) of 4.39 × 10−14 at 700 °C, 1.71 × 10−13 at 800 °C and 1.62 × 10−12 at 900 °C, i.e., 55, 48 and 22% lower compared to the as-received coated substrates, respectively. Scanning electron microscopy images and EDS analysis confirmed the formation of SiO2-rich layer beneath the surface oxide scale for the oxidized specimens. The thickness of the formed scale for the de-siliconized specimens was noticeably lower than that of as-received ones. Step-wise electrical conductivity measurements showed that the de-siliconized specimens, compared to the as-received specimens, had higher electrical conductivity (~ 30–40%), implying lower oxidation degrees of the substrate and thus, better electrical performance under cathodic service condition of SOFC.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Kendall and M. Kendall (eds.), High-Temperature Solid Oxide Fuel Cells for the 21st Century—Fundamentals, Design and Applications, (Elsevier, Amsterdam, 2015).

    Google Scholar 

  2. S. P. S. Badwal and K. Foger, Ceramic International22, 1996 (257). https://doi.org/10.1016/0272-8842(95)00101-8.

    Article  CAS  Google Scholar 

  3. J. C. W. Mah, A. Muchtar, M. R. Somalu and M. J. Ghazali, International Journal of Hydrogen Energy42, 2017 (9219). https://doi.org/10.1016/j.ijhydene.2016.03.195.

    Article  CAS  Google Scholar 

  4. N. Shaigan, W. Qu, D. G. Ivey and W. Chen, Journal of Power Sources195, 2010 (1529). https://doi.org/10.1016/j.jpowsour.2009.09.069.

    Article  CAS  Google Scholar 

  5. J. Wu and X. Liu, Journal of Materials Science and Technology26, 2010 (293). https://doi.org/10.1016/S1005-0302(10)60049-7.

    Article  CAS  Google Scholar 

  6. W. J. Quadakkers, V. Shemet, and L. Singheiser, High-Temperature Material US 2003005933 (2003).

  7. VDM® Crofer 22 APU no. 4046, 2010. Available: https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_APU.pdf. Accessed 23 Feb 2020.

  8. X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco and L. C. De Jonghe, Solid State Ionics176, 2005 (425). https://doi.org/10.1016/j.ssi.2004.10.004.

    Article  CAS  Google Scholar 

  9. P. D. Jablonski, C. J. Cowen and J. S. Sears, Journal of Power Sources195, 2010 (813). https://doi.org/10.1016/j.jpowsour.2009.08.023.

    Article  CAS  Google Scholar 

  10. R. Wang, Z. Sun, U. B. Pal, S. Gopalan and S. N. Basu, Journal of Power Sources376, 2018 (100). https://doi.org/10.1016/j.jpowsour.2017.11.069.

    Article  CAS  Google Scholar 

  11. J. W. Fergus, International Journal of Hydrogen Energy32, 2007 (3664). https://doi.org/10.1016/j.ijhydene.2006.08.005.

    Article  CAS  Google Scholar 

  12. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiß, Journal of the Electrochemical Society143, 1996 (3642). https://doi.org/10.1149/1.1837264.

    Article  CAS  Google Scholar 

  13. H. R. Farnoush, H. Abdoli and S. Bozorgmehri, Procedia Materials Science11, 2015 (628). https://doi.org/10.1016/j.mspro.2015.11.099.

    Article  CAS  Google Scholar 

  14. C. L. Chu, J. Lee, T. H. Lee and Y. N. Cheng, International Journal of Hydrogen Energy34, 2009 (422). https://doi.org/10.1016/j.ijhydene.2008.09.091.

    Article  CAS  Google Scholar 

  15. H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals75, 2011 (125). https://doi.org/10.1007/s11085-010-9224-4.

    Article  CAS  Google Scholar 

  16. N. Hosseini, M. H. Abbasi, F. Karimzadeh and G. M. Choi, Journal of Power Sources273, 2014 (1073). https://doi.org/10.1016/j.jpowsour.2014.10.017.

    Article  CAS  Google Scholar 

  17. G. Chen, et al., Journal of Power Sources278, 2015 (230). https://doi.org/10.1016/j.jpowsour.2014.12.070.

    Article  CAS  Google Scholar 

  18. B. Talic, S. Molin, K. Wiik, P. V. Hendriksen and H. L. Lein, Journal of Power Sources372, 2017 (145). https://doi.org/10.1016/j.jpowsour.2017.10.060.

    Article  CAS  Google Scholar 

  19. B. K. Park, et al., International Journal of Hydrogen Energy38, 2013 (12043). https://doi.org/10.1016/j.ijhydene.2013.07.025.

    Article  CAS  Google Scholar 

  20. J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu and L. Jian, International Journal of Hydrogen Energy41, 2016 (9611). https://doi.org/10.1016/j.ijhydene.2016.03.051.

    Article  CAS  Google Scholar 

  21. Z. Yang, G. G. Xia, X. H. Li and J. W. Stevenson, International Journal of Hydrogen Energy32, 2007 (3648). https://doi.org/10.1016/j.ijhydene.2006.08.048.

    Article  CAS  Google Scholar 

  22. Z. Yang, G. Xia, Z. Nie, J. Templeton and J. W. Stevenson, Electrochemical and Solid-State Letters11, 2008 (140). https://doi.org/10.1149/1.2929066.

    Article  CAS  Google Scholar 

  23. Z. Yang, G. Xia and J. W. Stevenson, Electrochemical and Solid-State Letters8, 2005 (168). https://doi.org/10.1149/1.1854122.

    Article  CAS  Google Scholar 

  24. H. H. Zhang and C. L. Zeng, Journal of Power Sources252, 2014 (122). https://doi.org/10.1016/j.jpowsour.2013.12.007.

    Article  CAS  Google Scholar 

  25. H. Zhang, Z. Zhan and X. Liu, Journal of Power Sources196, 2011 (8041). https://doi.org/10.1016/j.jpowsour.2011.05.053.

    Article  CAS  Google Scholar 

  26. M. Mirzaei, A. Simchi, M. A. Faghihi-Sani and A. Yazdanyar, Ceramic International42, 2016 (6648). https://doi.org/10.1016/j.ceramint.2016.01.012.

    Article  CAS  Google Scholar 

  27. J. P. Choi, K. S. Weil, Y. M. Chou, J. W. Stevenson and Z. G. Yang, International Journal of Hydrogen Energy36, 2011 (4549). https://doi.org/10.1016/j.ijhydene.2010.04.110.

    Article  CAS  Google Scholar 

  28. H. Abdoli and P. Alizadeh, Materials Letters80, 2012 (53). https://doi.org/10.1016/j.matlet.2012.04.072.

    Article  CAS  Google Scholar 

  29. T. Uehara, N. Yasuda, M. Okamoto and Y. Baba, Journal of Power Sources196, 2011 (7251). https://doi.org/10.1016/j.jpowsour.2010.11.078.

    Article  CAS  Google Scholar 

  30. C. Jia, Y. Wang, S. Molin, Y. Zhang, M. Chen and M. Han, Journal of Alloys and Compounds 2019. https://doi.org/10.1016/j.jallcom.2019.01.015.

    Article  Google Scholar 

  31. B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi and L. Jian, Journal of Power Sources195, 2010 (2782). https://doi.org/10.1016/j.jpowsour.2009.08.077.

    Article  CAS  Google Scholar 

  32. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Journal of Power Sources178, 2008 (163). https://doi.org/10.1016/j.jpowsour.2007.12.028.

    Article  CAS  Google Scholar 

  33. I. Belogolovsky, P. Y. Hou, C. P. Jacobson and S. J. Visco, Journal of Power Sources182, 2008 (259). https://doi.org/10.1016/j.jpowsour.2008.03.080.

    Article  CAS  Google Scholar 

  34. C. Macauley, P. Gannon, M. Deibert and P. White, International Journal of Hydrogen Energy36, 2010 (4540). https://doi.org/10.1016/j.ijhydene.2010.04.113.

    Article  CAS  Google Scholar 

  35. E. M. Riel, J. W. Stevenson, E. V. Stephens and M. A. Khaleel, Surface Treatments for Improved Performance of Spinel-Coated AISI 441 Ferritic Stainless Steel, (PNNL, Richland, 2013).

    Google Scholar 

  36. M. D. Bender and J. Rakowski, Evaluation of a Functional Interconnect System for SOFCs, (ATI Allegheny Ludlum, Pittsburgh, 2011).

    Google Scholar 

  37. G. C. Wood, J. A. Richardson, M. G. Hobby and J. Boustead, Corrosion Science 1969. https://doi.org/10.1016/s0010-938x(69)80097-1.

    Article  Google Scholar 

  38. F. H. Stott, G. J. Gabriel, F. I. Wei and G. C. Wood, Materials and Corrosion531, 1987 (521). https://doi.org/10.1002/maco.19870380910.

    Article  Google Scholar 

  39. F. H. Stott and F. I. Weir, Oxidation of Metals31, 1989 (369).

    Article  CAS  Google Scholar 

  40. H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Oxidation of Metals 1983. https://doi.org/10.1007/bf00656225.

    Article  Google Scholar 

  41. L. Mikkelsen, S. Linderoth and J. B. Bilde-Sørensen, Materials Science Forum461–464, 2004 (117). https://doi.org/10.4028/www.scientific.net/msf.461-464.117.

    Article  Google Scholar 

  42. A. M. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue and F. Ropital, Applied Surface Science207, 2003 (255). https://doi.org/10.1016/S0169-4332(02)01505-2.

    Article  CAS  Google Scholar 

  43. T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y. Xiong, M. E. Brito and H. Yokokawa, Journal of Power Sources157, 2006 (681). https://doi.org/10.1016/j.jpowsour.2006.01.055.

    Article  CAS  Google Scholar 

  44. Z. Yang, G. Xia, S. P. Simner and J. W. Stevenson, Journal of the Electrochemical Society152, 2005 (1896). https://doi.org/10.1149/1.1990462.

    Article  CAS  Google Scholar 

  45. S. Naka, M. Inagaki and T. Tanaka, Journal Materials Science7, 1972 (441). https://doi.org/10.1007/BF00553768.

    Article  CAS  Google Scholar 

  46. E. Zanchi, B. Talic, A. G. Sabato, S. Molin, A. R. Boccaccini and F. Smeacetto, Journal of the European Ceramic Society39, 2019 (3768). https://doi.org/10.1016/j.jeurceramsoc.2019.05.024.

    Article  CAS  Google Scholar 

  47. L. Cooper, S. Benhaddad, A. Wood and D. G. Ivey, Journal of Power Sources184, 2008 (220). https://doi.org/10.1016/j.jpowsour.2008.06.010.

    Article  CAS  Google Scholar 

  48. Z. Yang, G. G. Xia, M. S. Walker, C. M. Wang, J. W. Stevenson and P. Singh, International Journal of Hydrogen Energy32, 2007 (3770). https://doi.org/10.1016/j.ijhydene.2006.08.056.

    Article  CAS  Google Scholar 

  49. Z. Yang, G. G. Xia, G. D. Maupin and J. W. Stevenson, Surface and Coatings Technology201, 2006 (4476). https://doi.org/10.1016/j.surfcoat.2006.08.082.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Abdoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi-Zadeh, A., Salmani, S., Faghihi-Sani, M.A. et al. Oxidation Behavior and Electrical Properties of De-siliconized AISI 430 Alloy with Mn1.5Co1.5O4 Coating for Solid Oxide Fuel Cell Interconnect. Oxid Met 93, 401–415 (2020). https://doi.org/10.1007/s11085-020-09962-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09962-x

Keywords

Navigation