Skip to main content
Log in

Oxidation resistance, thermal expansion and area specific resistance of Fe-Cr alloy interconnector for solid oxide fuel cell

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

It is promising for metal especially ferritic stainless steel (FSS) to be used as interconnector when the solid oxide fuel cell (SOFC) is operated at temperature lower than 800 °C. However, there are many challenges for FSS such as anti-oxidant, poisoning to cathode and high area specific resistance (ASR) when using as SOFC interconnector. The effect of Cr content (12–30 mass%) in Fe-Cr alloys on thermal expansion coefficient (TEC), oxidation resistance, microstructure of oxidation scale and ASR was investigated by thermo-gravimetry, scanning electron microscopy, energy dispersive spectroscopy and four-probe DC technique. The TEC of Fe-Cr alloys is (11−13) × 10−6 K−1, which excellently matches with other SOFC components. Alloys have excellent oxidation resistance when Cr content exceeds 22 mass% because of the formation of chromium on the surface of alloy. The oxidation rate constants kd and ks decrease rapidly with increasing the Cr content and then increase slowlywhen the Cr content is higher than 22 mass%. The kinetic results indicate that Cr evaporation must be considered at high temperature for Fe-Cr alloys. After the alloys were oxidized in air at 800 °C for 500 h, log(ASR/T) (T is the absolute temperature) presents linear relationship with 1/T and the conduct activation energy is 0.6–0.8 eV (Cr16-30). Optimal Cr content is 22–26 mass% considering the oxidation resistance and ASR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yang, K. S. Weil, D. M. Paxton, J. W. Stevenson, J. Electrochem. Soc. 150 (2003) A1188–A1201.

    Article  Google Scholar 

  2. W. Z. Zhu, S. C. Deevi, Mater. Sci. Eng. A 348 (2003) 227–243.

    Article  Google Scholar 

  3. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Mater. High Temp. 20 (2003) 115–127.

    Google Scholar 

  4. J. W. Fergus, Mater. Sci. Eng. A 397 (2005) 271–283.

    Article  Google Scholar 

  5. T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics 143 (2001) 131–150.

    Article  Google Scholar 

  6. T. Horita, Y. P. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Power Sources 118 (2003) 35–43.

    Article  Google Scholar 

  7. T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, N. Sakai, H. Yokokawa, J. Power Sources 131 (2004) 293–298.

    Article  Google Scholar 

  8. H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics 168 (2004) 13–21.

    Article  Google Scholar 

  9. S. P. Jiang, S. Zhang, Y. Zhen, J. Mater. Res. 20 (2005) 747–758.

    Article  Google Scholar 

  10. B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi, L. Jian, J. Power Sources 195 (2010) 2782–2788.

    Article  Google Scholar 

  11. H. Nagai, S. Ishikawa, K. I. Shoji, Trans. Jpn. Inst. Met. 26 (1985) 44–51.

    Article  Google Scholar 

  12. J. N. Shen, L. J. Zhou, T. F. Li, Oxid. Met. 48 (1997) 347–356

    Article  Google Scholar 

  13. A. A. Reddy, D. U. Tulyaganov, M. J. Pascual, V. V. Kharton, E. V. Tsipis, V. A. Kolotygin, J. M. F. Ferreira, J. Hydrogen Energy 38 (2013) 3073–3086.

    Article  Google Scholar 

  14. C. S. Tedmon Jr, J. Electrochem. Soc. 113 (1966) 769–773.

    Article  Google Scholar 

  15. Z. Ruhma, A. R. Setiawan, A. Ramelan, R. Suratman, App. Mech. Mater. 660 (2014) 249–253.

    Article  Google Scholar 

  16. W. Zhang, D. Yan, J. Yang, J. Chen, B. Chi, J. Pu, J. Li, J. Power Sources 271 (2014) 25–31.

    Article  Google Scholar 

  17. H. Ali-Löytty, P. Jussila, M. Valden, Int. J. Hydrogen Energy 38 (2013) 1039–1051.

    Article  Google Scholar 

  18. B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi, J. Li, J. Power Sources 196 (2011) 7627–7638.

    Article  Google Scholar 

  19. H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics 168 (2004) 13–21.

    Article  Google Scholar 

  20. T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Power Sources 118 (2003) 35–43.

    Article  Google Scholar 

  21. M. F. Han, Z. B. Yang, X. L. Zhao, W. Huan, Mater. Sci. Technol. 15 (2007) 534–536.

    Google Scholar 

  22. J. W. Wu, X. B. Liu, J. Mater. Sci. Technol. 26 (2010) 293–305.

    Article  Google Scholar 

  23. W. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet, L. Singheiser, in: A. McEvoy (Eds.), Proc. 4th Eur. Solid Oxide Fuel Cell Forum, Lucerne Swizerland, 2000, pp. 827–836.

  24. R. Lula, J. Parr, A. Hanson, American Society for Metals, Met. Park, Ohio, 1986, pp. 188–196.

    Google Scholar 

  25. K. Huang, P. Y. Hou, J. B. Goodenough, Solid State Ionics 129 (2000) 237–250.

    Article  Google Scholar 

  26. H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Solid State Ionics 132 (2000) 227–233.

    Article  Google Scholar 

  27. H. Hayashi, M. Suzuki, H. Inaba, Solid State Ionics 128 (2000) 131–139.

    Article  Google Scholar 

  28. M. Mori, T. Yamamoto, H. Itoh, J. Alloys Comp. 145 (1998) 1374–1380.

    Google Scholar 

  29. F. Tietz, Ionics 5 (1999) 129–139.

    Article  Google Scholar 

  30. S. Uhlenbruck, F. Tietz, Mater. Sci. Eng. B 107 (2004) 277–282.

    Article  Google Scholar 

  31. J. J. Huang, C. Li, S. Lee, Y. S. Li, Intermetallics 43 (2013) 162–170.

    Article  Google Scholar 

  32. Y. Cheng, C. Chu, S. Lee, Corros. Eng. Sci. Technol. 47 (2012) 25–30.

    Article  Google Scholar 

  33. P. Footner, D. Holmes, D. Mortimer, Nature 216 (1967) 54–56.

    Article  Google Scholar 

  34. D. Mortimer, W. Sharp, British Corrosion Journal (1968) 61–67.

  35. I. Menzies, D. Mortimer, Transactions of the Institute of Metal Finishing 41 (1964) 15.

    Article  Google Scholar 

  36. N. K. Othman, J. Zhang, D. J. Young, Oxid. Met. 73 (2010) 337–352.

    Article  Google Scholar 

  37. E. Essuman, G. Meier, J. Zurek, M. Hänsel, W. Quadakkers, Oxid. Met. 69 (2008) 143–162.

    Article  Google Scholar 

  38. F. G. Hicks, D. R. Holmes, D. B. Meadowcroft, in: Proc. 4th Int. Cong., Metall. Corros. Amsterdam, 1969, pp. 379–384.

  39. N. Oishi, Y. Yamazaki, Solid Oxide Fuel Cells (SOFC VI) Electrochemical Society Proceedings 99 (1999) 759–766.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Wang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Lz., Chen, Zy., Wang, Lj. et al. Oxidation resistance, thermal expansion and area specific resistance of Fe-Cr alloy interconnector for solid oxide fuel cell. J. Iron Steel Res. Int. 24, 77–83 (2017). https://doi.org/10.1016/S1006-706X(17)30011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30011-0

Key words

Navigation