Skip to main content

Advertisement

Log in

Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Owing to the excellent elastic properties and chemical stability, binary metal or light element borides, carbides and nitrides have been extensively applied as hard and low-compressible materials. Researchers are searching for harder materials all the time. Recently, the successful fabrication of nano-twinned cubic BN (Tian et al. Nature 493:385–388, 2013) and diamond (Huang et al. Nature 510:250–253, 2014) exhibiting superior properties than their twin-free counterparts allows an efficient way to be harder. From this point of view, the borides, carbides and nitrides may be stronger by introducing twins, whose formation tendency can be measured using stacking fault energies (SFEs). The lower the SFEs, the easier the formation of twins. In the present study, by means of first-principles calculations, we first calculated the fundamental elastic constants of forty-two borides, seventeen carbides and thirty-one nitrides, and their moduli, elastic anisotropy factors and bonding characters were accordingly derived. Then, the SFEs of the {111} < 112 > glide system of twenty-seven compounds with the space group F\(\bar{4}\)3m or Fm\(\bar{3}\)m were calculated. Based on the obtained elastic properties and SFEs, we find that (1) light element compounds usually exhibit superior elastic properties over the metal borides, carbides or nitrides; (2) the 5d transition-metal compounds (ReB2, WB, OsC, RuC, WC, OsN2, TaN and WN) possess comparable bulk modulus (B) with that of cBN (B = 363 GPa); (3) twins may form in ZrB, HfN, PtN, VN and ZrN, since their SFEs are lower or slightly higher than that of diamond (SFE = 277 mJ/m2). Our work can be used as a valuable database to compare these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.O. Pierson, Handbook of Refractory Carbides and Nitrides (Noyes Publications, Westwood, 1996)

    Google Scholar 

  2. R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005)

    Article  Google Scholar 

  3. A.L. Ivanovskii, Prog. Mater. Sci. 57, 184 (2012)

    Article  Google Scholar 

  4. R. Telle, L.S. Sigl, K. Takagi, Boride-based hard materials, in Handbook of Ceramic Hard Materials (Wiley-VCH Verlag GmbH, Weinheim, 2008), pp. 802–945

  5. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51, 1032 (2006)

    Article  Google Scholar 

  6. G.F. Huang, L.P. Zhou, W.Q. Huang, L.H. Zhao, S.L. Li, D.Y. Li, Diam. Relat. Mater. 12, 1406 (2003)

    Article  Google Scholar 

  7. J. Xiang, Z. Xie, Y. Huang, H. Xiao, J. Eur. Ceram. Soc. 20, 933 (2000)

    Article  Google Scholar 

  8. K.B. Panda, K.S. Ravi Chandran, Metall. Mater. Trans. A 34, 1371 (2003)

    Article  Google Scholar 

  9. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, L.L. Snead, J. Nucl. Mater. 448, 448 (2014)

    Article  Google Scholar 

  10. A. Iveković, S. Novak, G. Dražić, D. Blagoeva, S.G. de Vicente, J. Eur. Ceram. Soc. 33, 1577 (2013)

    Article  Google Scholar 

  11. J. Hu, H. Xiao, W. Guo, Q. Li, W. Xie, B. Zhu, Ceram. Int. 40, 1065 (2014)

    Article  Google Scholar 

  12. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  Google Scholar 

  13. H. Dong, H.X. Yang, X.P. Ai, C. Cha, Int. J. Hydrog. Energy 28, 1095 (2003)

    Article  Google Scholar 

  14. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuesz, P. Kroll, R. Boehler, Nature 400, 340 (1999)

    Article  Google Scholar 

  15. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.J. Hemley, Nat. Mater. 3, 294 (2004)

    Article  Google Scholar 

  16. J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311, 1275 (2006)

    Article  Google Scholar 

  17. R.S. Igor, L.I. Alexander, J. Phys. Condens. Matter 20, 415218 (2008)

    Article  Google Scholar 

  18. Z.S. Zhao, L.F. Xu, L.M. Wang, B. Xu, M. Wang, Z.Y. Liu, J.L. He, Comput. Mater. Sci. 50, 1592 (2011)

    Article  Google Scholar 

  19. Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, J.H. He, Comput. Mater. Sci. 51, 112 (2012)

    Article  Google Scholar 

  20. X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng, Phys. Rev. B 74, 224112 (2006)

    Article  Google Scholar 

  21. V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Philos. Mag. A 82, 231 (2002)

    Article  Google Scholar 

  22. Y.J. Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang, Y.B. Jiang, W.T. Hu, C.C. Tang, Y.F. Gao, K. Luo, Z.S. Zhao, L.M. Wang, B. Wen, J.L. He, Z.Y. Liu, Nature 493, 385 (2013)

    Article  Google Scholar 

  23. Q. Huang, D.L. Yu, B. Xu, W.T. Hu, Y.M. Ma, Y.B. Wang, Z.S. Zhao, B. Wen, J.L. He, Z.Y. Liu, Y.J. Tian, Nature 510, 250 (2014)

    Article  Google Scholar 

  24. Z.J. Lin, L. Wang, J.Z. Zhang, X.Y. Guo, W. Yang, H.K. Mao, Y.S. Zhao, Scr. Mater. 63, 981 (2010)

    Article  Google Scholar 

  25. T.F. Li, T.M. Liu, L.Q. Zhang, T. Fu, H.M. Wei, Comput. Mater. Sci. 126, 103 (2017)

    Article  Google Scholar 

  26. B. Yang, X. Peng, H. Xiang, D. Yin, C. Huang, S. Sun, T. Fu, J. Alloys Compd. 739, 431 (2018)

    Article  Google Scholar 

  27. E.O. Hall, Proc. Phys. Soc. Lond. Sect. B 64, 747 (1951)

    Article  Google Scholar 

  28. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  29. Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60, 211 (2009)

    Article  Google Scholar 

  30. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 64, 954 (2011)

    Article  Google Scholar 

  31. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68, 238 (2014)

    Article  Google Scholar 

  32. S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Acta Mater. 55, 6843 (2007)

    Article  Google Scholar 

  33. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  34. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  35. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  37. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  38. L. Zhou, F. Körmann, D. Holec, M. Bartosik, B. Grabowski, J. Neugebauer, P.H. Mayrhofer, Phys. Rev. B 90, 184102 (2014)

    Article  Google Scholar 

  39. R. Yu, J. Zhu, H.Q. Ye, Comput. Phys. Commun. 181, 671 (2010)

    Article  Google Scholar 

  40. R. Hill, Proc. Phys. Soc. Lond. Sect. A 65, 349 (1952)

    Article  Google Scholar 

  41. K. Lau, A.K. McCurdy, Phys. Rev. B 58, 8980 (1998)

    Article  Google Scholar 

  42. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  Google Scholar 

  43. L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, D.W. Yuan, Comput. Mater. Sci. 108, 136 (2015)

    Article  Google Scholar 

  44. Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen, J. Alloys Compd. 726, 601 (2017)

    Article  Google Scholar 

  45. Z.G. Wu, X.J. Chen, V.V. Struzhkin, R.E. Cohen, Phys. Rev. B 71, 214103 (2005)

    Article  Google Scholar 

  46. M.G. Brik, C.G. Ma, Comput. Mater. Sci. 51, 380 (2012)

    Article  Google Scholar 

  47. G.V. Sin’ko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002)

    Article  Google Scholar 

  48. K.B. Panda, K.S.R. Chandran, Acta Mater. 54, 1641 (2006)

    Article  Google Scholar 

  49. S.K.R. Patil, S.V. Khare, B.R. Tuttle, J.K. Bording, S. Kodambaka, Phys. Rev. B 73, 104118 (2006)

    Article  Google Scholar 

  50. T. Oguchi, J. Phys. Soc. Jpn. 71, 1495 (2002)

    Article  Google Scholar 

  51. J.Q. Qin, D.W. He, J.H. Wang, L.M. Fang, L. Lei, Y.J. Li, J. Hu, Z.L. Kou, Y. Bi, Adv. Mater. 20, 4780 (2008)

    Article  Google Scholar 

  52. Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Y. Yang, S.Q. Ma, D.W. Yi, J. Alloys Compd. 509, 5242 (2011)

    Article  Google Scholar 

  53. C. Jiang, Appl. Phys. Lett. 92, 041909 (2008)

    Article  Google Scholar 

  54. X.G. Lu, M. Selleby, B. Sundman, Acta Mater. 55, 1215 (2007)

    Article  Google Scholar 

  55. Y. Liang, J. Zhao, B. Zhang, Solid State Commun. 146, 450 (2008)

    Article  Google Scholar 

  56. W. Chen, J.S. Tse, J.Z. Jiang, Solid State Commun. 150, 181 (2010)

    Article  Google Scholar 

  57. A. Cazzani, M. Rovati, Int. J. Solids Struct. 40, 1713 (2003)

    Article  Google Scholar 

  58. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  59. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  60. Y. Zhang, D.W. Yuan, J.H. Chen, G. Zeng, T.W. Fan, Z.R. Liu, C.L. Wu, L.H. Liu, J. Electron. Mater. 45, 4018 (2016)

    Article  Google Scholar 

  61. F. Zhao, L. Wang, D. Fan, B.X. Bie, X.M. Zhou, T. Suo, Y.L. Li, M.W. Chen, C.L. Liu, M.L. Qi, M.H. Zhu, S.N. Luo, Phys. Rev. Lett. 116, 075501 (2016)

    Article  Google Scholar 

  62. P. Käckell, J. Furthmüller, F. Bechstedt, Phys. Rev. B 58, 1326 (1998)

    Article  Google Scholar 

  63. P. Pirouz, D.J.H. Cockayne, N. Sumida, P. Hirsch, A.R. Lang, Proc. R. Soc. Lond. Ser. A 386, 241 (1983)

    Article  Google Scholar 

  64. L. Nistor, S. Nistor, G. Dinca, J. Van Landuyt, D. Schoemaker, V. Copaciu, P. Georgeoni, N. Arnici, Diam. Relat. Mater. 8, 738 (1999)

    Article  Google Scholar 

  65. U. Lindefelt, H. Iwata, S. Öberg, P.R. Briddon, Phys. Rev. B 67, 155204 (2003)

    Article  Google Scholar 

  66. S.K. Yadav, X.Y. Liu, J. Wang, R. Ramprasad, A. Misra, R.G. Hoagland, Philos. Mag. 94, 464 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11427806, 51471067, 51671082, 51671086 and 51302313) and the National Key Research and Development Program of China (No. 2016YFB0300801). We are highly grateful for the kind help from Zhixiao Liu at Hunan University, Changsha, with the written English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Chen.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, ZR., Yuan, DW. et al. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations. Acta Metall. Sin. (Engl. Lett.) 32, 1099–1110 (2019). https://doi.org/10.1007/s40195-019-00873-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00873-8

Keywords

Navigation